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ABSTRACT. Let F/F* be a CM field and let ¥ be a finite unramified place of F above the prime p.
Let 7 : Gal(Q/F) — GL,(F,) be a continuous representation which we assume to be modular for a
unitary group over F* which is compact at all real places. We prove, under the Kisin-Taylor-Wiles
conditions, that the smooth GL,, (F5)-action on the corresponding Hecke isotypical part of the mod-
p cohomology with infinite level above v]p+ determines FlGal(@p JF5)s when this latter restriction is
Fontaine—Laffaille and has a suitably generic semisimplification.
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1. INTRODUCTION

1.1. Motivation and the main result. Let p be a prime number and let K denote a finite
extension of Q5. One formulation of a hypothetical mod-p local Langlands correspondence is the
existence of an injection from the set of n-dimensional representations of Gal(Q,/K) over F), to the
set of admissible representations of GL,,(K) over E, which is compatible with global correspondences
occurring in the mod-p cohomology of locally symmetric spaces. At present, the only known case of
such a correspondence is when K = @Q, and n = 2 (see [Bre03al Bre03b| for the semisimple case).
In this case, a p-adic version which is moreover compatible with deformations (see |[Col10) [Pas13],
Kis10]) led to a proof of many cases of the Fontaine-Mazur conjecture [Kis09, [Eme|. The current
literature suggests that the situation is enormously more involved beyond the case of GL2(Q,).

We now introduce a global context for our discussions on mod-p local-global compatibility alluded
to earlier. Let F//F be a CM extension in which all p-adic places of F* split and p is unramified.
Let G,p+ be an outer form of GLj,, which splits over F' and is definite at all infinite places. We fix
an isomorphism G,y = GL,,/p, and for all places v’ | p of FT we fix a lift 2 in F. We thus have
isomorphisms F UJF & Fy and we identify G JE with GLy,/p, via the previous isomorphisms without
further comments. ’

Let us now fix a place v | p of F* with lift vin F'. Let U" < G (AoFof) be a compact open subgroup,
which we assume to be unramified at all places v’ | p with v # v. We fix an irreducible smooth F,-
representation Vs of GL,,(OF,,) (so-called a Serre weight) for each v’ | p and let W = @, 120 Var
which is naturally an irreducible smooth F,-representation of U?. (We denote as usual OF,, the

ring of integers of F,y and k,s the residual field.)

We let K % F;. Given the smooth F,-representation W? of [ p, 20 GLn(OFy, ), we define

in the usual way the space of algebraic automorphic forms on G(FT)\G(A%,) of level UY and
coefficients WY by

S W) {12 GENGAE) = W | Flgw) = uy f(g) Vg€ GAR,), Yu e U}
(with the obvious notation u = upyu? for the elements v € U"). This space carries commuting actions
of a Hecke algebra T and G(F,") = GL,(K). To a continuous and conjugate self-dual representation
7: Gal(Q/F) — GL,(F,), one can attach a maximal ideal mz C T and set 7(T) o S(UY, W?)[mgz].
Mod-p local-global compatibility asserts that, up to multiplicity, the hypothetical injection given
by the mod-p local Langlands correspondence takes p o ?‘Gal(@p /K) to the GL, (K)-representation
(7). Two natural questions arise:

(A) Does p determine the isomorphism class of 7(7) (up to multiplicity)?
(B) Does the smooth representation 7(7) determine p?

The limited evidence towards Question at present comes mainly in the form of results towards
the weight part of Serre’s conjecture, i.e. results on the GL,, (O )-socle of 7(7) (where Ok denotes
the ring of integers of K'). The main result of this paper affirmatively answers Question in the
Fontaine-Laffaille case under mild hypotheses (genericity of modular Serre weights and Taylor—
Wiles hypotheses).

The main result of this paper is the following

Theorem 1.1.1 (Corollary [10.3.3)). With the above setup, assume moreover that

(i) T(Gal(@/F(G,)) is adequate;
(i1) For each place v’ | p of F'T, the Serre weight Vs is bn-generic Fontaine—Laffaille;
(i) Homg 1, 04)] (Vs m(Mlar,ox)) # 0, and in particular T is automorphic.



MODULI OF FONTAINE-LAFFAILLE MODULES AND MOD-p LOCAL-GLOBAL COMPATIBILITY 4

Then the isomorphism class of the smooth GL,,(K)-representation w(F) determines the isomorphism
class of p.

We elaborate on the genericity condtion appearing in item above. The isomorphism class of
V. is determined by an element

Mot = (Mo j)1<j<ihy F,] € (z") ke Tl

(see (8.1.1) for example). Then Vs is 5n-generic Fontaine—Laffaille if for each 1 < j < [ky : Fp)
the tuple Ay ; = (A ji)1<i<n—1 € Z" satisfies

A7 g1~ Aegn SP—6nand - Ay — Ay 2 50

for all 1 < ¢ < mn — 1. This, explicit and purely combinatorial, genericity condition is of the same
nature as the genericity conditions (on local Galois representations) appearing in [BD14) [HLM17,
LMP18], in contrast to the more elaborate conditions appearing in [LLHLMa] (which depends on
an implicit polynomial P € Z[X1, ..., X},], independent of p), or in [PQ] (which is related to the
geometry of the moduli spaces of Galois representations).

We remark that item can be relaxed to the condition that V,, is an obvious Serre weight for
a bn-generic F|Gal(@p /) I the sense of the forthcoming [LLHLMDb)].

1.2. Main ingredients in the proof. Now we sketch the main ideas in the proof of Theorem|[1.1.1
To simplify the notation, we assume that K = Q) for the rest of § We also fix as coeflicient a
sufficiently large finite extension E of Q,, with ring of integers O and residual field F. The Cartan
decomposition suggests that the isomorphism class of 7(7) is determined by the isomorphism class
of the restriction 7(7)|qL,(z,) as a GLn(Zp)-representation, as well as the action of the diagonal
matrices (pld;, Id,—;) on 7(7) for all 1 < i < n. Consequently, the following questions arise in the
way of proving Theorem [1.1.1

(1) How much can we say about p from the structure of 7(7)|qr, (z,)?

(2) How much can we say about p using the action of the diagonal matrices (pld;,Id,,—;) on
() for all 1 <i < n?

(3) Gathering all the information on p we know from Question and Question (2)), can we
determine the isomorphism class of p?

Before answering these questions, we need an explicit classification of mod-p representations of
Gal(Q,/Qp) which are Fontaine—Laffaille (this is done in § see also § . Question
is answered by the geometry of the moduli stack FL?LH7 of rank n Fontaine—Laffaille modules of
fixed weight A + 71 = (A\; +n — 7)1<i<n, which is intimately related to groupoids of n-dimensional,
Fontaine—Laffaille representations of Gal(@p /Qp) (see § . We especially study a partition on
it (by locally closed substacks) closely related to the configurations of the obvious Serre weights
for a NOT necessarily semisimple Galois representation over F,; these Serre weights, studied first
in the forthcoming [LLHLMD], will be recalled in the body of the article (see also § . The
answer to Question (2)) leads to a set of rational functions on FL)*" and is performed through the
following procedure:

e compute the mod-p reduction of normalized eigenvalues of Hecke operators acting on spaces
of classical automorphic forms (see § ;

e compute the mod-p reduction of normalized eigenvalues of Frobenius acting on Weil-Deligne
representations (via integral p-adic Hodge theory, see § ;

e match the eigenvalues of Hecke operators (the “automorphic side”) with those of Frobenius
(the “Galois side”) by the classical local Langlands correspondence.
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Then we can translate Question to the following

(4) Can we determine the isomorphism class of p from the partition from Question and the
values of all possible rational functions from Question ?

Question is a combinatorial problem, studied in § on the interaction between the geometry
of the scheme U\GL,,, the T-conjugation action on it, and the set of invariant functions (as rational
functions on U\GL,) where U (resp. T) is the subgroup of upper-triangular unipotent matrices
(resp. of diagonal matrices).

1.2.1. Moduli of Fontaine—Laffaille modules and the niveau partition. Fontaine—Laffaille theory
gives a framework to have a moduli interpretation of a large class of mod-p representations of
Gal(Q,/Qp) (namely, the mod-p analog of crystalline p-adic representations of Gal(Q,/Qp); see
[FL82]).

Let A = (A\1,...,An) € Z™ be a tuple of integers satisfying \y > --- > A\, and \y — A\, <p—n.
Let = (n—1,n—2,...,1,0) € Z". We consider the moduli stack FL;\LJF” of Fontaine—Laflaille
modules of rank n with weights A+n= (A +n—1,--- , A\p—1 + 1, \,) (the weights of a Fontaine—
Laffaille module are the mod-p analog of the Hodge—Tate weights for a p-adic crystalline Galois
representation). A standard argument shows that FL?{*‘" is represented by an algebraic stack,
namely the quotient of U\GL,, by the T-conjugation action (see Proposition [2.2.6]).

A Galois representation p : Gal(Q,/Q,) — GL,(F) is Fontaine-Laffaille if it arises from a
Fontaine—Laffaille module via the Fontaine-Laffaille functor constructed in [FL82]. Hence, our
study of Fontaine—Laffaille mod-p local Galois representations can be reduced to the geometry of
U\GL,, together with the T-conjugation action on it. For each x € U\GL,(F), we write p, 5, for
the (isomorphism class of the) mod-p local Galois representation attached to x via the Fontaine—
Laffaille functor.

We identify the permutation group &,, with the Weyl group of GL,. Using base change of
Fontaine-Laffaille modules, we show that for each point 2 € U\GLy(F), p, 14, is semisimple if and
only if x lies in the schematic image of Tw under GL,, — U\GL,, for some permutation w € S,
uniquely determined by x (see Lemma . Moreover, there exists a semisimple representation
T(w™ A+ 1) : Ig, = GL,(F) such that Puinllo, = T(w™t, A +n) for all F-points z lying in the
schematic image of Tw. In other words, the semisimple locus in U\GL,, is exactly given by the
disjoint union of schematic images of Tw in U\GL,, for all permutations w € &,,. Motivated by
the classification of mod-p local Galois representations by their semisimplifications, we introduce a
partition {Ny }wes, on U\GL,, (the niveau partition) satisfying the following

Proposition 1.2.1 (Proposition [3.2.18)). A point x € U\GL,,(F) lies in Ny (F) if and only if
P lie, 27w LA+ 1)

The points x € N, admit the following characterization: the closure of the orbit of z under
T-conjugation intersects the schematic image of Tw in U\GL,,. This characterization comes from
a geometric interpretation of taking semisimplification of a mod-p local Galois representation. In
general, the locally closed subscheme N,, C U\GL,, can have many irreducible components, as
representations having the same semisimplification may have different submodule structures.

The partition {Ny }uee, is still too coarse for our purpose, and we will introduce two other

partitions of U\GL,, in § and § which refines it.

1.2.2. Serre weights and the partition P. In order to answer Question , we need to introduce
a partition P of U\GL,, into locally closed subschemes. This partition is motivated by the Serre
weight conjectures as we now explain.
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Let &, denote the Emerton—Gee stack of rank n projective étale (p,I") modules ([EG, Theorem
1.2.1]) and A, 1eq its reduced substack which is an algebraic stack over [F,,. We recall some properties
of the Emerton—Gee stack:

(1) there is a natural bijection between |X;,(F)| = |&}, yea(F)| and the set of isomorphism classes
of p: Gal(Q,/Q,) — GL,(IF);
(2) there is a natural bijection between the set of irreducible components of &, ;cq and the set
of Serre weights (namely, absolutely irreducible F-representations of GLy,(FF}));
(3) FLM" is identified with the irreducible component of Xy.rea corresponding, via the bijection
in item ([2) just above (normalized as in [LLHLMal § 7.4]), to the Serre weight F'()\).
Here F()) is the absolutely irreducible F-representation of GL,(F,) of highest weight A. Let
w : Qy — F* be the character corresponding to the mod-p cyclotomic character. Under mild
technical assumptions, the fact that F'(\) ®p w" ! o det embeds into 7(T)|aL, (z,) (cf. item |(iii)| in

Theorem [1.1.1) ensures that p = T|q, g, /5 € [FLA*"(F)|. Given a semisimple, suitably generic,
p/ v

Galois representation p : Gal(Q,/Q,) — GLy,(F) we have a set of Serre weights W’ (p), containing
a subset Wypy (p) consisting of obvious Serre weights (see [GHSIS8, § 9.2 and § 9.3]). We consider
the following set of Serre weights

(1.2.2) U W)
pEFLAT(F)]

as well as the set of irreducible components of X}, ;eq corresponding to it. Such irreducible com-
ponents have the property that their intersections with FLQ‘H’ correspond to right translates of
Schubert varieties (in B\GL,, with B the upper-triangular Borel subgroup) under the local model
diagram

(1.2.3) U\GLy,

PN

FLT B\CL,

where the left arrow is the quotient by T-conjugation and the right arrow is the quotient by left
T-multiplication.

Motivated by this, we consider the partition on FLQ‘F" induced, by intersection, from the irre-
ducible components of &), ;.q indexed by . This partition lifts to the partition P on U\GL,
defined as the coarsest common refinement of the stratifications {U\UwBu}yee, with u running
in &,,. In particular, each C € P is stable under both the left T-multiplication action and the T-
conjugation action. For each p € |FL$‘L+77(IE‘)|, we can associate a unique C € P such that p, y,, = p
for some closed point « € C(FF). The following theorem answers Question (|1):

Theorem 1.2.4 (cf. Lemma|10.2.14). Letsocqr,,(z,) (7(T)) be the mazimal semisimple subrepresen-
tation of m(7)|qL,(z,)- Then the isomorphism class of the GLy(Zp)-representation socay,, (z,) (7(T))
determines the element C € P associated with p.

Given C € P and z € C(F), we say that 7(w™', A\+n) is a specialization of p, y, if the schematic
image of Tw in U\GL, lies in the Zariski closure of C (see the paragraph before Lemma
for a different definition). This provides us with a characterization of P important for the proof
of Theorem m given two points z,2" € U\GL,(F), p, y, and p, \,, share the same set
of specializations if and only if 2,2’ € C(F) for some C € P (see Theorem [8.4.6). The proof
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of Theorem also crucially uses the modularity of obvious Serre weights of p (defined using
specializations of p), which is proven in the forthcoming [LLHLMD].

1.2.3. Relevant types and invariant functions. In this section, we are interested in computing the
mod-p reduction of normalized Frobenius eigenvalues of Weil-Deligne representations.

Let 7 : Ig, — GL,(E) be a tame inertial type, i.e. a smooth semisimple representation of I,
which extends to Wg,. We assume throughout that 7 is multiplicity free as Ig,-representation.
Let 71 C 7 a sub inertial type. For each Weil-Deligne representation ¢ : Wq, — GL, (F) satisfying
S| Ig, = 7, there exists a unique sub W, -representation ¢; C ¢ such that ST Iy, o 7. Then Adimeig
is a character of Wg, on which the geometric Frobenius element corresponding to p (via local class
field theory) acts by a scalar, which we denote by ¢, (). We thus obtain a function ¢, on
the moduli stack WD, of Weil-Deligne representations with inertial type 7. We remark that there
exists an isomorphism between WD, and a split torus G}, such that ¢ -, is the product of the first
r1 projections to G,,, where r; < r are the numbers of irreducible sub inertial types of 71 and 7
respectively.

Our goal is a comparison between FLA™" and WD, (for various tame inertial types 7) and then
compute the mod-p reduction of a normalization of ¢, as a rational function on FL?‘L"'”. This
comparison is performed inside the Emerton—Gee stack X),, and even more precisely, inside the
p-adic formal stack X7 of potentially crystalline representations with inertial type 7 and parallel
Hodge-Tate weights n —1,...,1,0. The reduced special fiber X ; of X7 is a topological union of
irreducible components of &), ;eq (see [EGl §8.1]). There is a natural epimorphism from the rigid
generic fiber X™"8 of X7 towards the rigidification Wng of WD... Note that our comparison
between FLQ*"7 and WD, is meaningful only if FLQ‘H7 is contained in X[, as one irreducible
component.

We aim at pulling back the function ¢, from Wng to X™M8 and then specializing it to
FLQ*”. For this operation to be meaningful we need to normalize ¢, ;, by a scalar in p?. and the
fact that ¢, ,, does not have constant p-adic valuation on WD forces the result of specialization
(if defined) to be a rational function on FLA*". This specialization is difficult in general, but
we are able to perform it when 7 is a F(\)-relevant, namely chosen from a set of special tame
inertial types {7y }wes, for which the Serre weight F'(\) is an “outer” Jordan-Holder factor in
the mod-p reduction of the GL,,(F,)-representation attached to 7 via the inertial local Langlands
correspondence. (The set of outer Jordan—-Holder factor for such representations is introduced in
[LLHLMa, §2.3.1].) For each w € &,,, we have the following diagram

(125) U\UTTU()UU)()’LU( XNTMMO )‘)?Tw,rig,o
FL?\LJH?C XTw )er,rig - WDS_ig

where wg € &, is the longest element and X0 is a p-adic formal scheme whose special fiber is iden-
tified with U\UTwoUwow. The first vertical map is given by the composition U\UTwoUwoyw <
U\GL,, - FLX*" and thus U\UTwoUwow is a T-torsor over some open substack of FL\*". The
second vertical map is a T(gp -torsor followed by an open immersion. The third vertical map is
induced from the second by taking rigid analytic fiber.

Given a sub inertial type 7,1 C 7, we can attach a subset I C {1,...,n} satisfying w(I) = I.
The key result is that the pull back of ¢, -, , to XTwrige hag constant p-adic valuation in Z. In
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other words, there exists d € Z such that p_d¢7w77w’1, after pulling back to XTwTige yig 1)

extends to an invertible function on /'?T“”O, which specializes to an invertible function f, ; on
U\UTwoUwow. Explicitly, f,. 1 is given by
U\UTwolUwow = Twolwow — T L% G,
where € : T — G, is the projection to k-th diagonal entry. The condition w(I) = I ensures that
the rational function f,, ; on U\GL,, is invariant under 7T-conjugation, and thus descends to FLf‘ﬁ”.
Let w € 6y, v € U\UTwoUwow(F) and p : Gal(Q,/Q,) — GL,(O) be a potentially crystalline
lift of p, y1, With type 7, and Hodge-Tate weights n —1,...,1,0. Let WD*(p) be the dual of
Weil-Deligne representation associated with p, where p — WD(p) is the covariant functor to Weil—
Deligne representation of [CDT99, Appendix B]. We have the following

Theorem 1.2.6 (Theorem (9.3.3)). There ezists an integer d € Z depending only on A\, Ty, and Ty 1,
such that for any potentially crystalline lift p : Gal(@p/Qp) — GL,(O) of Py rty, with type 7, and
Hodge—Tate weights n —1,...,1,0, we have

L4 ¢Twa7—w,1 (WD*<p)) € deX; a/nd

e the image of p~%¢r, 7, ,(WD*(p)) under O* — F* is given by fu, ().

Motivated by this result, we define the set of invariant functions as
Inv < {fur|we &, IC{l,....,n}, wl) =1}
These are rational functions on U\GL,, whose properties are studied in § below.

1.2.4. Invariant functions distinguish T-conjugacy classes. Motivated by Question , we study
the relation between the partition P, the T-conjugation action on U\GL,, and the set Inv of
invariant functions. For each C € P, we write Inv(C) C Inv for the subset of invariant functions
whose zero and pole divisors are away from C. Then Question can be reduced to the following

concrete problem (using ((1.2.3))

(5) Does the set Inv(C) distinguish T-conjugacy classes in C?

In other words, is it the case that for any Noetherian F-algebra R the elements x, 2’ € C(R) lie in
the same T-conjugacy class if and only if g(z) = g(2’) € R* for all g € Inv(C)?

The first difficulty to answer Question is that the affine schemes C € P are genuinely compli-
cated (they are in general far from being affine spaces or split torus and a priori could be reducible).
It is thus difficult to check Question by directly computing the restriction of Inv(C) to C. We
therefore need to find a partition coarser than P which is well-suited for explicit computation of
the invariant functions.

Recall the partition {Ny }wes, from §[1.2.1] For simplicity of exposition, we first treat those N,
which are irreducible. We fix a tuple of positive integers (ny, ..., n,) satisfying >/ _, ny, = n, and
consider the standard Levi subgroup M C GL,, given by the diagonal blocks GL,, X --- x GL,,..
We consider the parabolic subgroup woBwoM C GL,, and write N~ for its unipotent radical. The
unipotent group N~ corresponds to a set of negative roots ® - (with respect to the Borel B). The
Weyl group of M is identified with &,, x --- x &,, C &,, and we choose an element w of it such
that its factor in &,,,, is a n,,-cycle for each 1 < m < r. Then our construction of N, in §
implies that the quotient map GL,, - U\GL,, induces an isomorphism

(1.2.7) TN~ w = No.

In particular, we see that N, is the product of a torus T with the affine space N~. The isomor-
phism ((1.2.7)) gives us standard coordinates to do computation on N,,, by writing D¥ : N, — G,,
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(resp. ul : My — G,) for the morphism induced from extracting the k-th diagonal entry of T'
(resp. extracting the a-th entry of N7) for each 1 < k < n (resp. for each aw € ®—). (Our notation
here is slightly different from that of § for convenience.)

Note that the quotient of N, by T-conjugation is still a genuine stack in general. To answer
Question (5)), we thus need a T-conjugation stable partition of N, (coarser than P), such that
the quotient by T-conjugation of each element (of the partition) is an affine scheme with simple
coordinates. A natural candidate is given by {Nya} AC® where

Na(R) € {A € Ny(R) | u®(A) # 0 for each o € A and u®(A) = 0 for each a € ®y— \ A}

For each A C ®p—, Ny, 2 is a split torus of rank n + #A with ring of global sections given by the
following ring of Laurent polynomials

OWNwa) = FI(DE)*, (ug)™ [ 1<k <n,a €A

The quotient of Ny, A by T-conjugation, written Ny, A /~7.cnj, does exist as an affine scheme whose
ring of global sections is given by the following invariant subring

(1:2:8) Oy /~r-ens) = FIDEEL, () [ 1<k < n, € AT,

Note that N, A is a topological union of elements in the partition P (see Lemma . Hence we
study Question for each C € P satisfying C C Ny A, by explicit computations on N, o. The
combinatorial complexity to answer Question is the technical heart of this work and we give an
example below to illustrate some of the difficulties.

Example 1.2.9. Assume that w = 1 (this implies M =T, r =n, N~ = woUwy and ® - is the
set of all negative roots). We choose a n-cycle w’ € &,, and consider the following sets of negative

roots
def

AL E{(kw' (k) [1<k<n, k>w'(k)} and AL, % {(w'(k),k) [1<k<n, k<u'(k)}

def

and we set A, = A?;, UA,,. Now we set

def
Fo= | ILwt || 1T«

a€eAT, a€EA”,
w w

-1

It turns out that

o ONLA,, /~Teng) = FIFY (DY)* [ 1<k < nj;

e there exists a unique element C,s € P which is an open subscheme of N4 ,.
One can check that f; 1z is invertible on /\/’LAw, and f1 (x |N1’Aw' = D’f for each 1 < k < n. To
answer Question for Cyy we look for a permutation w” € &,, and a subset I C {1,...,n} that
satisfies the following

e w'(I) =1 and fur € Inv(Cy);

e Fylc,, can be generated from fy lc , and {(D})*!c , |1 <k <n}.
In particular, we see that to answer Question we need to construct a pair (w”, I) for each n-cycle

w’ € &,. It is thus natural to expect that for more general choices of w, the answer to Question
will involve delicate combinatorics.

Now we return to a general element C in P with C C N, 4. In order to solve Question , we
study how to generate the restriction of the ring (|1.2.8) to C from the set

(1.2.10) {gFYe | g € Inv(C)}.
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A key observation is that we can find a set of special units (cf. Definition [5.3.1)) in the ring (1.2.8])
that satisfy the following:

e the set of special units generates the ring ((1.2.8]);
e the restriction to C of each special unit can be generated from the set ([1.2.10)).

These conditions together suffice to solve Question . As mentioned in Example the con-
struction of these special units is combinatorial and the technical heart of this paper. Finally, we
arrive at our main result on the set of invariant functions (when N, is irreducible): the set Inv(C)
distinguishes T-conjugacy classes in C for each w as above, each A C ® - and each C € P satisfying
C C waA. When N, is not irreducible, essentially the same idea works, except that we need to
treat different irreducible components of N, and define an analogue of Ny, .

Hence, we obtain the following complete solution to Question .

Theorem 1.2.11 (Corollary [7.7.9). For each C € P, the set Inv(C) distinguishes T -conjugacy

classes in C.

1.2.5. Mod-p reduction of normalized Hecke eigenvalues. In this section, we study how to study the
mod-p reduction of certain Hecke operators in characteristic zero, and relate them to the action of
the diagonal matrices (pld;,Id,,—;) on 7(7) for some 1 < ¢ < n — 1. Note that the action of pld,, is
easy to understand and therefore omitted from the discussion below.

We studied in § how to lift invariant functions (which live in characteristic p) to Frobe-
nius eigenvalues of Weil-Deligne representations (which live in characteristic 0). Using classical
local-global compatibility, we interpret invariant functions as the mod-p reduction of normalized
eigenvalues of Hecke operators acting on a space of automorphic forms in characteristic 0. Hence,

the main issue is how to read mod-p reduction of normalized eigenvalues inside 7 (7).

Let K & GL,,(Zp) be the standard compact open subgroup of GL,(Q)). Let 6 be an irreducible

E-representation of K equipped with a K-stable O-lattice 8° C 6. We consider the compact induc-
tion c—IndﬁL"(Qp )0° and write HEL”(Q” )(90) & EndGLn(Qp)(c—IndﬁLn(Qp )00) for the Hecke algebra
associated to it. In order to study the mod-p reduction of normalized eigenvalues, we consider the
following space

(1.2.12) Homgy, (g,)(c-Indge " @)6°, 7 (7))

which admits a natural left action of ’HL"(Q” ) (60°)

HI%L”(QP )(90) may act trivially on 1) even if the latter space is non-zero, and thus does not
capture interesting information of 7(7). Roughly speaking, an Hecke eigenvalue in O\ {0} is not a
p-adic unit in general, and thus a naive mod-p reduction of it can be zero. Instead, we would like
to capture inside 7(7) the p-adic leading term of the Hecke eigenvalue. For example, if the Hecke
eigenvalue ¢ € O \ {0} has p-adic valuation x € N, we would like to capture in 7(7) the image of
p~Fc under O — F*,

We fix our choice of 6 based on the set up in § We fix an integer 1 < ¢ <n — 1 and write
w@ (p) et (pld;, Id,,—;) for the diagonal matrix. Let L C GL, be the standard Levi subgroup with
diagonal blocks GL; x GL,_; and consider the pair of parahoric subgroups P*,P~ C K whose
image under K — GL,,(FF,) is given by the F,-points of the standard (resp. of the opposite of the
standard) maximal parabolic subgroup of GL,, with Levi L. Hence, each representation of L(IF})
is a smooth representation of P™ (resp. P~) by inflation. The parahoric subgroups P, P~ are
related by w® (p)Ptw®(p)~! = P~. Let 7, and 7 be tame inertial types over Q, of dimension

. Unlike the characteristic 0 situation, the algebra

i and n — 1, respectively, such that 7 oo 71 & T2 is multiplicity free as an E-representation of Ig,.
Using the inertial local Langlands correspondence, we associate with 7 = 7 @ 7 an irreducible
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E-representation o(7) of GL,(F)) (resp. an irreducible E-representation o o(t1) ®g o(12) of
L(F,)) which satisfies o(7) = c- IndP+a We also fix an arbitrary L(F )-stable O-lattice ¢° C o

n(@p)( ) Ln(Qp) o)

and consider the Hecke algebra H

The Hecke algebra 7—[ Ln (@ )( ©) contains an element UT!, the U, opemtor defined by the double

coset PTw® (p)~1P+ C GL n(Qp) and the identity rnorphlsrn idyo € Endp(c°) (see §[10.1.2). Under
a local Langlands correspondence in families, namely the patching Constructlon of [CEG™16], the
operator UT! exactly recovers the function ¢-1 on the moduli of Weil-Deligne representations, up

= EndGLn(Qp) (c- Ind

T,T1
to a scalar in pZ. Hence, according to Theorem our next goal is to capture the p-adic leading
term of the eigenvalues of the action of UT'.

We first observe that the equality Ptw® (p)~'P* = w®(p)~'P~P* induces the following de-
composition of UT!

Ut
o-Tndgim (@) 5o c-Indg (@) g b c-Tndoim (@) g

GLn(Qp) )

where S, is the embedding induced (by applying c-Indy from an embedding of O-modules

1.2.13 (1) 2 ¢-Ind¥,.6° < ¢-Ind¥_o
P P

and t; is the intertwining isomorphism induced from w® (p)P*+w®(p)~! = P~. Note that
is an isomorphism after inverting p and so identifies c-Ind5_o° with a K-stable O-lattice in o (7).

Let o(7)° be another K-stable O-lattice in o(7) with o(7)° C c-Indg; 0°, and denote this inclu-
sion by S:(T). Let x € Z be the maximal integer such that p~"o(7)° C C—Indg_ o° via , and

we define S;(T) as the composite o(7)° AN p~*o(7)° C c-Indp_0°. The maps Sj(T) and S;(T) fit
into the following commutative diagram involving UT! (see ((10.1.9)))

Ut
(1214) c- IndGLn(Qp)U S_} c- IndGLn(@p) o —> c- IndGLn(@p) o
Sj(T)T SU(T)T S;Q_r)T
c—IndI(;{L"(Qp) (1)° p4> c- IndGL"(Qp) (1)° C—IHdELn(Qp)O'(T)O.

Applying Homp(ar, (g,) (= m) to (1.2.14) for a O[GL,(Qp)]-module 7 we obtain the following
diagram (by abusing the notation of maps in ([1.2.14) for the induced maps between Hom-spaces)
(1.2.15)

Ut
Hom(c—Ind Ln(@) ,TT) LA Hom(c- Ind Ln(@p) o , ) <7 Hom(c- Ind Ln(@p) o ,TT)

+ - +
Soml So(r)l So(ﬂl

~ 1

Hom(c—IndICiL"(Qp)a(T) ) <p— Hom(c-Ind g GLn (Qp) o(1)°,m) eUf — Hom(c-Indy GLn (Qp) o(1)%,m)
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where Hom denotes Homp(gr, (). If S;F(T) is an isomorphism in (|1.2.15), then we can consider

(S’;F(T))*1 and define a new map
ﬁ? Lo S;(T) ot;o (S:(T))*1 : Hom(c—IndﬁL"(Qp)a(T)o, ) — Hom(c—IndI(iL”(Qp)a(T)o, ).

We call the map INJI1 a normalized U,-operator. Note that ﬁ? (if defined) is an isomorphism if
and only if S;(T) is an isomorphism. We caution the reader that S;(T) and S;(T) are almost never
isomorphisms in , but the induced maps in ([1.2.15) can nevertheless be isomorphisms for
suitably chosen 0°, o(7)° and w. We also note that the maps S,, p* and UT! in are usually
zero in our application to m = 7 (7).

Given a permutation w € &, and a subset I C {1,...,n} satisfying w(l) = I, we have an
invariant function fy, ; € Inv, a F(\)-relevant type 7, as well as a sub inertial type 7,1 C 7, from

§ We choose 7 & Tw Q0 "1 1 def Tw,1 @O @™ ! where @ is the Teichmiiller lift of the
mod-p cyclotomic character w. Let z € U\GL,(F) be a point satisfying p, \,, = p, and C € P be

the unique element satisfying = € C(F). The following is our main result on the action of ﬁ?.

Theorem 1.2.16 (see the proof of Theorem [10.2.15). Assume that fi, 1 € Inv(C) with I #
0,{1,...,n}. Then there exist c° and o(7)° depending only on \,w, I such that

Somy 0 ti = Fua (@) - 83y - Hom(c-Indg " %6°, 7(7)) = Hom(c-Indg " *)o(7)°, (7).

The existence of ¢° and o(7)° such that both S:(T) and S;(T) are isomorphisms follows from

the fact that the mod-p reduction of o(7) contains a unique (counting multiplicity) modular Serre
weight of 7, which is F'(\) ®p w" ! odet. A simpler argument also shows that pld,, acts on 7 (7) by
det(x) where det : U\GL,, = G, is the natural determinant map. Note that f,, ; = det € Inv(C)
for each w € G,,.

1.2.6. Conclusion. Now we deduce Theorem when K = Q,, from the results in § (Recall
that the general finite unramified extension K is our context in this paper, but in the introduction
we only treat the case K = Qy.)

Let C € P and = € C(F) be a point such that p = p, ,.,. First of all, Theorem plies
that the isomorphism class of 7(7) determines the C € P. Then it follows from Theorem and
Theorem that the isomorphism class of 7(7) determines the set

(1.2.17) {9(z) | g € Inv(C)}.

Finally, we deduce from Theorem [1.2.11|that the set (1.2.17)) uniquely determines the T-conjugacy
class of x, or equivalently the isomorphism class of p. Hence, we conclude that 7(7) determines the
isomorphism class of p, which finishes the proof of Theorem when K = Q,.

1.3. Notation. If F is any field, we write Gp < Gal(F/F) for the absolute Galois group, where
F is a separable closure of F. If F is a number field and v is a place of F then we write F, for
the completion of F' at the place v, and if we further assume v is a finite place of F' then we write
Op, for the ring of integers of F,, and k, for the residue field. If F is a local field, we write Ir to
denote the inertia subgroup of Gr. Moreover, if Wr < G denotes the Weil group, we normalize
Artin’s reciprocity map Artp : F* 5 Wj}b in such a way that uniformizers are sent to geometric
Frobenius elements.

We fix once and for all an algebraic closure Q of Q. All number fields are considered as subfields
of our fixed Q. Similarly, if £ € Q is a prime, we fix algebraic closures Q, as well as embeddings
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Q < Q. All finite extensions of Q, will thus be considered as subfields in Q,. Moreover, the
residue field of Q, is denoted by Fy.

Let p > 2 be a prime. We write ¢ : Gg, — Z, for the cyclotomic character with mod-p
reduction w, and write w : Gg, — Z,; for the Teichmiiller lift of w.

For f > 0 we let K be the unramified extension of Q, of degree f. We write k for its residue

field (of cardinality ¢ = p/) and W (k) for its ring of integers. We write val, : K* — Z for the

def

p-adic valuation normalized by val,(p) = 1, and then write |- | = g V() for the p-adic norm.

1.3.1. Galois theory. We write e = pf — 1 and fix a primitive e-th root 7 € K of —p. Define the
extension L = K (7). The choice of the root 7 let us define a character

Wk : Gal(L/K) — W(k)*, g~ @

Let E C @p be a finite extension of QQ,, which will be our coefficient field. We write O for its

ring of integers, fix an uniformizer w € O and let mg = (w). We write F =¥0) /mpg for its residue

field. We will always assume that F is sufficiently large. In particular, we will assume that any

embedding ¢ : K — @p factors through £ C @p. We abuse the notation val, and | - | o g Vel ()

for their extension to E*.
We fix an embedding oy : K < E. The embedding og induces maps O — O and k — F; we

will abuse the notation and denote these all by og. We let ¢ denote the p-th power Frobenius on &

def s . . def ~
and set o = 09 0 7. The choice of oy gives w ¥ = ggowg : Ix — O, a fundamental character

of niveau f, and an identification between the set J & {o : K — E} and Z/f. It is clear that
ol -1 _
w= Hjej 0j0WK = wfpfl . We fix once and for all a sequence p of (Pn)nen where p, € K satisfies

Ph i1 =Pn, o = —p. We let K o U K(pn) and Gk, & Gal(K/Kx).
We now fix n > 1, the dimension of the Galois representation we deal with in this paper. We set

neN

r % 5! and fix an unramified extension K’ D K of relative degree 7 and residue field &’. We assume
that E is sufficiently large so that it contains any embedding oj : K’ — Q, and fix o : K’ — E

which extends oo. If f & 7 f and j/ € {0,..., f'—1} we set oy o oh o~ hence an identification
of the set of embeddings K’ — F with Z/f’ so that restriction to K induces the natural projection
Zlf > Z/f.

Let p : Gxg — GL,(E) be a p-adic, de Rham Galois representation. For 0 : K < E C @p, we
define HT;(p) to be the multiset of o-labeled Hodge-Tate weights of p, i.e. the set of integers i

such that dimg (/) ®0,Q, (Cp(—i))GK # 0 (with the usual notation for Tate twists). In particular,
the cyclotomic character € has Hodge—Tate weights 1 for all embedding o — F.

An inertial type for K is a conjugacy class of a morphism 7 : Ix — GL,(FE) with open kernel
and which extends to the Weil group W of Gx. The inertial type of p is the isomorphism class of
WD(p)|1,, where WD(p) is the Weil-Deligne representation attached to p as in [CDT99, Appendix
B.1] (in particular, p — WD(p) is covariant).

1.3.2. Linear algebraic groups. We consider the linear algebraic group GLy, /7 defined over Z. We
omit the subscript Z where there is no risk of confusion. Let ®T C & (resp. ®V'" C ®V) be
the subset of positive roots (resp. coroots) of GL, with respect to the Borel B C GL,, of upper
triangular matrices. We further write B = T x U where U C B is the subgroup of upper triangular
unipotent matrices of GL,, and T' C GL,, is the torus of diagonal matrices. We use the notation



MODULI OF FONTAINE-LAFFAILLE MODULES AND MOD-p LOCAL-GLOBAL COMPATIBILITY 14

Uq : U — G, for the projection to the a-entry, for each o € ®. Write W (resp. W,, resp. W) for
the Weyl group (resp. the affine Weyl group, resp. the extended affine Weyl group) of GL,,.

We have an injective group homomorphism W < GL,(Z), which identifies an element w € W
with the matrix whose i-th column is given by the w(i)-th vector in the standard basis of Z".
(We use the same symbol w to denote the image of w € W via W — GL,(Z); this will not
cause confusion.) We write wg € W for the longest element in the Weyl group of GL,. We let
X*(T) denote the group of characters of T', X,(T') for the group of cocharacters of T', which are

both identified with Z™ in the usual way. For instance, the i-th element of the standard basis

€ . (0,...,0,1,0...,0) (with the 1 in the i-th position) corresponds to character extracting the

i-diagonal entry of a diagonal matrix. We write (-,-) : X*(T) x X,.(T) — Z for the standard
pairing. Let @ (resp. ®V) denote the set of roots (resp. coroots) of GL,, and Agr C X*(7T') the root
lattice. We then have

(1.3.1) Wo=ArpxW and W =X*(T)xW.

Let G be the group (Res@K/ZpGLn) Xz, O, and similarly define T', Z, B, U. There is a natural
isomorphism G = [[;c 7 GLn /0. One has similar isomorphisms for T', Z, X*(T), &, @Y where ®
(resp. @) denotes the set of roots (resp. coroots) of G. If u € X*(T), then we correspondingly
write p =Y jeg Hj- We use similar notation for similar decompositions. Again we identify X™*(T")
with (Z")7 in the usual way and let €;; € (Z")7 be (0,...,0,1,0,...,0) in the j-th coordinate,
where 1 appears in position 4, and n-tuple 0 otherwise. In particular, we sometimes abuse notation
and identify p; with an element of Z", and write 0 € X*(T) for the element corresponding to
zero element in (Z")7. The arithmetic Frobenius induces an automorphism 7 on X*(T). It is
characterized by m(\); = Aj41. Again, we write X, (T) for the group of cocharacters of T', and
write (-,-) for the standard pairing (-,-) : X*(T) x X.(T) — Z.

Let @+ C @ (resp. @' C @) be the subset of positive roots (resp. coroots) of G with respect
to the upper triangular Borel in each embedding. Let A C ®T be the set of simple roots, and
AY C ®V'" be the set of simple coroots. We define dominant (co)characters with respect to these
choices. Let X7} (T) be the set of dominant weights. We denote by X;(7) C X} (T) be the subset
of weights A € X7 (T') satisfying 0 < (X, ") < p—1 for all simple roots o € A. We call X;(T) the
set of p-restricted weights. We write X°(T) for the set consisting of elements A € X*(T) such that
(A\,a¥) =0 for all roots a € ®. Let n; € X*(T) be (n—1,n—2...,1,0) in the j-th coordinate and
0 otherwise, and let n be ). jegn € X~ (T'). We sometimes abuse notation and consider 7); as the
element (n —1,n —2...,1,0) € Z" = X*(T): this should cause no confusion. Then 7 is a lift of
the half sum of the positive roots of G.

Let W be the Weyl group of G. We abuse notation and write wy for its longest element. Let
W, and W be the affine Weyl group and extended affine Weyl group, respectively, of G. Let
Ap C X*(T) denote the root lattice of G. As above we have identifications W = w, w,= W(f ,

W =~ WY and isomorphisms analogous to li
The Weyl group W acts naturally on X*(T). If A € X*(T) and wy € W we write wy(\)
to denote the image of A by this action. The image of A € X*(T) via the standard injection

X*(T) < W is denoted by t5. We have similar actions of W and W, on X*(T). These actions of
W W and W, on X *(T') are compatible with one another when considering the natural inclusions
wcCcw,cC Ww. Moreover, the Weyl groups W, W W, act on X*(T') via the p-dot action, given
by taw - p = tpyw(p + 1) — 1.
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1.3.3. Miscellaneaous. For any ring S we write M, (S) to denote the set of n by n matrix with
entries in S. If & = ¢; — ¢; is a root of GL,,, we also call the (4, j)-th entry of a matrix A € M, (5)
the a-entry.

If M is an R module and h : R — R’ is an homomophism of rings we write h*(M) to denote the
pullbck of M along h, i.e. the R-module M ®pj, R'. We define kpr to be the map M — h*(M)
sending m to m ® 1, which is an h-semilinear map. If h is moreover an isomorphism, then ks, is
bijective and the h~!-semilinear inverse h*(M) — M sends m ® a to mh~'(a).

If X is a scheme over Z and R is any ring, we write X for the fibered product X Xgpec 7z Spec R.

Let V be a representation of a finite group I' over an E-vector space. We write JH(V) to
denote the set of Jordan—-Holder factors of the mod w-reduction of an O-lattice in V. This set is
independent of the choice of the lattice.

1.4. Acknowledgements. Part of the work has been carried out during visits at the Ecole Nor-
male Supérieure de Lyon (2018), Uslan National Institute of Science and Technology (2019), Labo-
ratoire Analyse Géométrie Applications (2020). We would like to heartily thank these institutions
for their support.

We sincerely thank Christophe Breuil and Florian Herzig for their constant support and interests
in this work.

D.L. was supported by the National Science Foundation under agreements Nos. DMS-1128155
and DMS-1703182 and an AMS-Simons travel grant. B.LH. acknowledges support from the Na-
tional Science Foundation under grant Nos. DMS-1128155, DMS-1802037 and the Alfred P. Sloan
Foundation. S.M. was supported by the ANR-18-CE40-0026 (CLap CLap) and the Institut Uni-
versitaire de France. C.P. was supported by Samsung Science and Technology Foundation under
Project Number SSTF-BA2001-02.



MODULI OF FONTAINE-LAFFAILLE MODULES AND MOD-p LOCAL-GLOBAL COMPATIBILITY 16

2. PRELIMINARIES

Throughout this section we let K/Q, be a finite unramified extension of degree f. Recall that
the choice of o¢ : k — F identifies {0,..., f — 1} with J via j > o} L 5o 0.

2.1. Inertial types. We record here some notation and facts pertaining to tame inertial types
for K. We start with defining the genericity conditions that will be used throughout the paper.

Definition 2.1.1. Let p € X*(T) and m € N. We say that u is m-generic Fontaine—Laffaille
if m < (u,a¥) < p—m for all positive roots o € ®*. We say that u is Fontaine—Laffaille if
0 < (u,a) < p— 2 for all positive roots o € P,

Note that if p is 1-generic Fontaine-Laffaille then it is, in particular, Fontaine-Laffaille. We
also note that if ¢ € X% (T') is dominant and p + 7 is Fontaine-Laffaille, then p + 7 is O-generic
Fontaine-Laffaille.

Recall from § that an inertial type for K is a conjugacy class of representations Ix —
GL,(F) which have an open kernel and extend to the Weil group of K. Similarly, we define
an inertial F-type for K as a conjugacy class of representations Iy — GL,(IF) which have open
kernel and extend to the Weil group of K. An inertial (F-)type is tame if it factors through the
tame inertial quotient. Given an inertial type 7, one obtains an inertial F-type 7 by taking the
semisimplification of the reduction of any Ix-stable O-lattice in 7.

We have a combinatorial description of tame inertial types from [LLHLMal, Example 2.4.1]:
Definition 2.1.2. For (s7,pn) € W x X*(T) define the inertial type 7(s7,u+ 1) : Ix — GL,(O)
as follows: If sy = (so,...,s7-1), set s, oo sos1s2---sp-1 € W oand a,, ) € X*(I) such that
sy g0 = po+mo and Qs 5 = splisily sy (o + ) for 1 < j < f — 1. Recall
) fk

def ZOS’CSTflaSﬁ(i)p

from §|1.3.1) that 7 = n! so that (sr)” = 1. Then by letting x; = w
Zf;é Ol(sj,u),jpj € Z", we define:

with a(® def

(2.1.3) msg.nt+n) = P v

1<i<n
We set 7(s7, it + 1) to be the reduction of 7(s7, it + 1) to the residue field of O.

Definition 2.1.4. Let 7 be a tame inertial type.

(1) A lowest alcove presentation of T is a pair (sgz,u) € W x X*(T') where p + n is 0-generic
Fontaine-Laffaille and such that 7 = 7(s7, u+mn). Given a lowest alcove presentation (s, @)
for 7 we associate to it the element w(7) & tutnsg € w.

(2) We say that the lowest alcove presentation of 7 is compatible with ( € X*(Z) if w(r)W.
corresponds to ¢ via the isomorphism E/Ea 5 X*(Z). Lowest alcove presentations of

tame inertial types are said to be compatible if they are compatible with the same element
of X*(Z).

a

(Note that lowest alcove presentations for a given tame inertial type are not unique, but in
generic cases one can pass from one to another by [LLHLl Proposition 2.2.15])

For a local Galois representation p : Gxg — GL, (F), we consider the inertial representation p%|;,.
and let [p*|r,] be the Teichmiiller lift of p*|7,. Then (the conjugacy class of) [p**|7,] is a tame
inertial type.
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Definition 2.1.5. We say that p is m-generic if [p°|1, ] has a lowest alcove presentation (s, pt)
where u + n is m-generic Fontaine—Laffaille.

Let 7 & 7(s7, 1+ n) be a tame inertial type for K with u+ 7 being 1-generic Fontaine-Laffaille.
Recall from § the fixed unramified extension K’ of K of degree r = n!, with the embedding
o : K' — E extending oo : K < E. Let 7/ denote the type 7 viewed as a tame inertial type for
K'. (We call 7’ the base change of 7.) Define a’(SJ’N) € X*(T)Hom(¥.F) by

def _k
a(SJ w.j+kf = St

(The embedding o, induces an isomorphism X*(T)Hom("F) o x (7))
If 8’7/ = (s%)jieg’ € W' is the element characterized by s’, = s; for j = j' (mod f) and similarly
for p/ € X*(T)", then 7" = 7'(s;,, 1) = T’(l,a’(sjm) by (2.1.3). The orientation s., € W" of

a/(sj#) is defined by

(Qoy ) for 0<j< f=1,0<k<r—1.

(2.1.6) Shegins = i (s sy s ) for 0< < f-1,0<k<r—1

(see [LLHLMa, equation (5.4)]).

2.2. Fontaine—Laffaille theory. The goal of this section is to define the stack of Fontaine—Laffaille
modules. In all what follows R is a Noetherian [F-algebra. The R-algebra k ®p, R is endowed with
a canonical R-algebra endomorphism ¢ that acts as the arithmetic Frobenius on k, and as the
identity on R.

Since all schemes and stacks are defined over Spec F we omit the subscript ep from the notation
when considering the base change to IF of an object o defined over O (e.g. GL,, r will be denoted
by GL,, and so on).

Definition 2.2.1. A pseudo Fontaine—Laffaille module with R-coefficients is a finite projective
k ®r, R-module M together with:

(1) an exhaustive and separated decreasing filtration {Fil® M };cz by k®p, R-modules (the Hodge

filtration of M), whose associated graded pieces gri(M) Crpil v /Fil'™ M are projective

k ®r, R-modules;

(2) a -semilinear bijection ¢ps : gr*(M) = M. (We will often omit the M in the subscript of

éar and @; v & ¢ |gri(ary when the module M is clear from the context.)

Via the decomposition k ®, R = [[,c 7 R induced by 2 ® 1 — (0;(z)) e7, we write ¢; € k ®p, R
for the idempotent element corresponding to the component j. A pseudo Fontaine—Laffaille module
M admits a canonical decomposition M = Hje M () with M) & €; M, a projective R-module.
The action of z ® 1 € k ®r, R on M) is given by oj(z) € R. Each M) inherits a decreasing,
exhaustive and separated filtration Fil' M) by R-modules, and a collection of R-linear morphisms

o) : gri (M) -5 MUY
where gri(M()) = LRIl M) / Fili*t M) (which is projective). Note that for each j € J this family
of morphisms QSZ(] ) induces a morphism ¢U) : gr* (M) — MU+,

Definition 2.2.2. A Fontaine—Laffaille module with R-coefficients is a pseudo Fontaine—Laffaille
module M with R-coefficients such that for each j € J

min{i € Z | Fil' M) = 0} —max{i € Z | Fil MY = M} <p—1.
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Fontaine-Laffaille modules with R-coefficients form a category, with morphisms being k®p, R-linear
homomorphisms which respect the filtration and the maps ¢. There is an evident notion of base
change along an [F-algebra homomorphism R — S.

For A\ € X*(I), we write A = ()\j)jej with )\j = ()\j71, .. -7)\j,n) ez

Definition 2.2.3. A Fontaine-Laffaille module of weight A € X% (T) (with R-coefficients) is a
Fontaine-Laffaille module (M, {Fil* M};, {¢;};) with R-coefficients such that gr’(M)) # 0 if and
only if 7 € {)‘j,lv )\j72, ey >\j,n}a for each j € J.

Note that if a Fontaine-Laffaille module is of weight A € X7} (T) then A is Fontaine-Laffaille.

We now fix a dominant weight A € X% (T') such that X 4 7 is Fontaine-Laffaille. Note that such
a weight A + 7 is, in particular, 0-generic Fontaine—Laffaille. Let FLT)‘[H7 be the sheafification of
the functor that sends a Noetherian F-algebra R to the groupoid of Fontaine-Laffaille modules of
weight A + n with R-coefficients.

Definition 2.2.4. Let (M, {Fil' M};cz,{¢i}icz) € FLAT(R), where R is a Noetherian F-algebra
with residue field F. A basis 8 = (81));cs for M is a J-tuple where for all j € J the (ordered)
n-tuple U = (BY), . ,,67(1])) is a basis for M),

We say that a basis 8 for M is compatible (with the Hodge filtration) if for each j € J

Fidiit(n=9 ) — R /@fj) 4.+ R- 5@@
forall i € {1,2,--- ,n}.

Note that bases for M do not necessarily exist, but they always do Zariski locally on R. Each
compatible basis 8 for M induces a basis gr*(8) = (gr'(ﬁ(j)))je g for gr*(M), which together
determine a matrix for ¢, called the matriz of ¢ar attached to . -

We now show that FLA" is representable by an algebraic stack. We let FL7 = U\G be the
basic affine for G (which is a quasi-affine variety, cf. [Gro97, Theorem 2.1 and Corollary 2.7]). We

define the shifted conjugation action of T' on FL s by the formula (noting that 7" normalizes U)
(2.2.5) (A-)0) & (t(j+1))—1A(j)t(j)
for all j € J, where t = (1)) ;e7 € T(R) and A = (A9, € FL7(R).

Proposition 2.2.6. FL;\LJ”’ is representable by [ﬁj/NZ—sh.cnj] where T acts via the shifted con-
jugation action.

Proof. Let FLAT"E be the functor which classifies objects (M, {Fil' M }icz, {¢i}iez) of FLA to-
gether with a choice of compatible basis 5. It is represented by G, the isomorphism given by
extracting the matrix Matge g g(¢asr) of ¢as with respect to the bases gr® 8 and 3. Since compat-
ible bases exists Zariski locally, the forgetful map FLAT"E — FLA* is an B-torsor (recall from
§ [1.3.2 that B is the Borel subgroup of G corresponding to matrices which are upper triangular in
each embedding).

We conclude by computing the resulting B-action on G: the effect of changing 3 on Matge 5 3(¢nr)
is given by the action of B on G given by the formula

(2.2.7) (A b)) & (b(j+1))—1A(j)5(j)

for all j € J, where b = (b9);cr € B, b = (5”),c the image of b in B/U = T, and A =
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We now discuss the effect of changing the field K by an unramified extension. Recall that we
have fixed an unramified extension K'/K, with residue field &’ of degree r = n! over k. Tensoring
k' over k gives a natural transformation of functors

BC : FL)" — FLY +7
where X' = (X)))jes € X*(T)" is characterized by X, = A; when j = j' (mod f) and similarly
for /. We have a similar result as Proposition for FL?‘I/"'”/. Passing to the quotient by the

T-shifted conjugation and using our identifications of J" and J with Z/f’ and Z/f respectively,
we deduce a commutative diagram of stacks over Spec F:

FLy —— [FL7/~T-shenj] —— FLY"

| | I

f]:\Zj/ —_— [%\ZJ'/NIT-Sh.cnj] L} FL;.\L/J'_WI

where BC is the diagonal embedding compatible with the identification of (M @, k)" and MO)
when j = 5’ (mod f).

2.3. Breuil-Kisin modules with descent. In this section, we review Breuil-Kisin modules with
descent data, and their necessary properties. We follow closely [LLHLM20, § 3.1] and [LLHL § 3.2].
Throughout § 7 =71(s7,u+n) is a tame inertial type with u + n being 1-generic Fontaine—
Laffaille.

y def

Write ¢ & p/' — 1 and fix # & (—p)v € Q, such that (1')¢ = 7. Write L' © K (),
def

A Gal(L/K') € A Y Gal(I//K). Asin §[1.3.1] the character Ggr : A — W(K)*, g~ 420
pflfl
is independent of the choice of 7’ and (Wg/) »’-1 = @Wk. Let 7/ be the inertial type for K’ induced

from 7. Then we can view T as a A-representation whose restriction to A’ is given by 7’.
def

For a p-adically complete Noetherian O-algebra R, let &1/ p = (W (k')®z, R)[v']. The ring &1/
is endowed with an action of A = Gal(L//K): for any ¢ in A/, we have g(u') & (@ (g) ®z, 1r)u
and g acts trivially on the coefficients. Let o € Gal(L’'/Q)) be the lift of the arithmetic Frobenius
on W (k') which fixes 7. Then ¢/ acts on &/ g, by letting ¢/ act trivially on both ' and R, and
through the usual action on W (k). (One checks that the above rule defines a group action of A

on S g.) If we let v & (u')pf,*1 then
(61.p)>"" = (W(k) @z, R)[v].

As usual, we have the endomorphism ¢ : &1/ p — &/ g which acts as ¢ on W (k’), acts trivially
on R, and sends v’ to (u')P.

o

Definition 2.3.1. A Breuil-Kisin module over R with height in [0, k] and descent datum of type
7 is a triple (9, gon, {G}gen) where:
(1) M is a projective &/ p-module;
(2) don : p*(9M) — M is an injective &1/ g-linear map whose cokernel is E(u’) -torsion;
(3) {g : M — M}yen is the datum of a semilinear A-action on 9 compatible with ¢gp, i.e. a
collection of R-linear bijections such that



MODULI OF FONTAINE-LAFFAILLE MODULES AND MOD-p LOCAL-GLOBAL COMPATIBILITY 20

(a) for each g € A, the morphism ¢ induces a &/ g-linear isomorphism §* : g*(9M) — M
(the & g-linear isomorphism ¢* is uniquely determined by the g-semilinear bijection
g, and conversely);

(b) each g is compatible with the Frobenius:

goom=dmo(J®s, peley p):

(c) the collection {G}4ea induces an action of A on (9, pex) (where each ¢ is a g-semilinear
automorphism of (9N, Pon)).
(We often omit the collection {G}4ea from the notation of Breuil-Kisin modules with descent
data.)
(4) foreach 0 < 5/ < f/ —1:

MU ' mU) = (7)Y ®o R

as A’-representations. (As for Fontaine-Laffaille modules, we have a decomposition 9t =
®,ZyM) induced by W (k') @z, R = [[/, 2, R.)

We let Y"1 denote the functor on p-adically complete Noetherian @-algebras taking R to the
groupoid of Breuil-Kisin modules over R with height in [0, 2] and descent data of type 7. (Recall
that 7/ denotes the type 7 viewed as a tame inertial type for K’.) We also define Y07 in a
similar fashion.

We recall the notion of a Frobenius twist for elements of YI%"7' Recall that o € Gal(L'/Q,)
is the lift of the arithmetic Frobenius on W (k') which fixes 7. Given (O, ) € YOI (R)
define ((07)*(M), S(os)-(any) € YO TI(R) by letting (o) (D) = M @y ) or W(K), with
Frobenius ¢, sy« (o) defined by

Pm® /’gfl (&)
M T (o) (o)

O (M Dy (), W(E')) —— ¢ (M) @y (1), 00 W(K)

the first arrow being the canonical isomorphism. Here (of)*(7/) is the pull back of 7/ along o/

~

which is an automorphism of A’. We clearly have (o/)*(7') = 7/ as 7 is a A-representation.
(Recall the definition of the morphisms of the form s from § ) The action of g*" € A’ on
((Uf)*(m)v ¢(o‘f)*(93?)) is given by

I Ow ) of lwwy + M Own,or WE) = M @y ey, 0r W(EK),
which is a g”f—semilinear isomorphism, and induces the following commutative diagram:
(m Ow (k)0 W (k")) ®6L/,R’9"f SR % (m @&, rg S .r) Ow (k'),0f W (k")
"oty g0 Tl {wa(MJﬂWW)

M Ry (17,06 W(K) M Dy (17,00 W(K)

9w (), f LW (i)

(the map can being induced from the gpf—semilinear isomorphism Ko @y (1)o7 L (k1) * My (41,0
W (k') = (M®s,, .0 OL.R) Oww)or W(K).) By [LLHLMIS| Proposition 6.6] an extension to A
of the A’-action on (90, pgn) is then equivalent to the datum of an isomorphism wgy : (o )*(90) = M
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in Y027 (R) satisfying the condition that the r-fold composite of

RFon,of

m—" (of)* (o) = m
is the identity on 9.

If x : A" - O* we write img(j/) to denote the y-isotypical component of 9. Since A/A’ is
cyclic of order 7, generated by o/, whenever we have (I, ¢on) € YO":7(R) we have isomorphisms

i)~ * G+ ~ i+ f
(2.3.2) m) 3 (o)) 5 zmgpf )
for each j' € J" and x : A" — O, where the first isomorphism is induced by fgy ,s and the second
is induced by toy.

Definition 2.3.3. An eigenbasis (cf. [LLHLMal Definition 5.1.6]) for (90, ¢on) € YIOMT(R) is a
collection 8 = (ﬁ(j'))j,ej where each gU") = (Bi(] ))195” is a basis for 9MU") over R such that A/
acts on ,Bi(J ) by the character X;l (defined in equation 1) and satisfying

(2.3.4) Lon (Koot (BY'=Nyy = gui")

for all j € J', 1 <i < n. If B is an eigenbasis for (M, pon) € YIOM7(R) we write Cg& to denote
the matrix of qbg{) with respect to 3, i.e. the element of Mat, (&1, r) such that

oy (rmp(897Y)) = 89O

The notion of eigenbasis, hence the sequence (Cg;%)ogg f—1, depends on the chosen lowest alcove
presentation of 7, since the sequence of character (x;); does, cf. [LLHL, Remark 3.2.12].

As O is chosen to be sufficiently large and the order of A’ is coprime to p, the objects in Y1027 (R)
have an eigenbasis Zariski locally. A

Let Aoy g = (Ai(gt)ﬁ)j/ej/ be the tuple of matrices Az()gt)ﬂ € Mat,, (R[v]) defined via
("

J
T (Sp ) !

. a’ (jl) v
(2.3.5) iy = (i) (W) AG, (u)

I
_a(

where al(g?#) aef Z{;Bl a/(sjym_j,ﬁpi and —j’ + 7 is taken modulo f'. By [LLHLMal § 5.1], the

matrices C’g{}j, Ag{)ﬁ only depend on j' modulo f (see the paragraphs after Definition 5.1.6 and

Remark 5.1.7 in loc. cit.; note that (ngjjt g)jzej/ and (Ag;)ﬁ)jlejl do depend on the choice of the

lowest alcove presentation (s, u) of the tame inertial type 7, see [LLHLMa, Remark 5.1.5], [LLHL
Remark 3.1.12]).

2.4. Etale p-modules. This section follows [ILLHLMa, § 5.4]. Recall that we have fixed a tame
inertial type 7 = 7(s7, u + 1) with p + n being 1-generic Fontaine—Laffaille.

Let Og denote the p-adic completion of (W (k)[v])[1/v], endowed with a Frobenius endomor-
phisms ¢ which extends the Frobenius ¢ on W (k') and satisfies p(v) = vP. Let R be a p-adically
complete Noetherian O-algebra. The ring Og@ZpR is naturally endowed with a Frobenius endo-
morphism ¢ and we write ®- Modét’”(R) for the groupoid of étale p-modules over (’)g(EA@ZPR. Its
objects are projective modules M of rank n over (’)g@ZPR, endowed with a (’)g@sz—linear iso-

morphism ¢ : *(M) = M. As usual, we obtain a category fibered in groupoids ®- Mod®"
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over p-adically complete Noetherian O-algebras. Given an object (M, ¢r) € ®-Mod®"(R) we
have an R-linear decomposition M = @ ¢ 7MU) together with R-linear and (v — vP)-semilinear
isomorphisms

) - MU= 5 M),

Now let Og 1/ denote the p-adic completion of (W (k')[u'])[1/], endowed with a Frobenius
endomorphisms ¢ extending the Frobenius ¢ on W (k') and such that ¢(u') = (u)?. We have an

analogous definition for the groupoid ®- Modfltd’nL/(R) of étale p-modules over Og L’@)ZPR of rank n

with descent data. (An object of ®- Modzfj’z, (R) is the datum of an étale p-module over O, L’®ZPR
of rank n, together with a collection of R-linear isomorphisms § : M — M satisfying the properties
of Definition 7, replacing 9 and ¢gn by M and ¢y, respectively. Note that the A-
action on W (k') [u/] extends, by continuity, to a continuous action on Og /.). We write ®- Modi‘(}g,
for the corresponding groupoid-valued functor over p-adically complete Noetherian (O-algebra.

As before, given an object (M, da1, {G}gen) € ®- MOngZ,nL' (R) we have an R-linear decomposition

M= Dy 7MU) together with R-linear and (u/ — (u')?)-semilinear isomorphisms
¢5\j//1) - MUY 5 6D,

Moreover, for all g € A’ we have an R-linear, qbs\]:l)-compatible automorphism ¢ : MUD — MU
giving an R-linear action of A’ on each factor MU,

If (M, pon) € YIOr—U7(R), then M Ry (k) [w] O¢, 1/, endowed with a Frobenius and descent data
induced from those on 91, is an object of - Modiﬁi’l,(R). This produces a natural transformation of
functors Y0n—17 _ &_ Modi&’z,. Moreover, since v = (u’ )pflfl, taking A-fixed elements produces
a natural transformation ®- Mod‘;fi’z, — ®- Mod®"" between functors over p-adically complete Noe-
therian O-algebras. Composition of the two functors above produces a morphism of groupoid-valued

functors over p-adically complete Noetherian O-algebras:
(2.4.1) g 1 YO=UT 4 & Mod®"
(M, do) = (M Qw (k) [w] Oe,175 P Ow (k) [w'] 10 11)

Recall that we have fixed a lowest alcove presentation (sz, i) of 7. By [LLHLMal, Proposition 5.4.1
and 5.4.3], if u + n is n-generic Fontaine-Laffaille, then the morphism &, is a closed immersion of
stacks over Spf O.

A=1

2.5. Galois representations and p-modules. In this section we study the relations between
the groupoids introduced above and p-adic Galois representations. We keep the setting of the
previous sections; in particular 7 = 7(s7, u 4+ 1) is a tame inertial type with u + 7 being 1-generic
Fontaine—Laffaille.

If R is a complete local Noetherian O-algebra with residue field F, we write Rep’(Gx) for the
groupoid of p-adic representations of G on free R-modules of rank n, and we have the anti-
equivalence of groupoids of J-M. Fontaine:

Vi : & Mod®“™(R) — Reph(Gk..),
which induces
Ty YO =UT(R) — Replh(Gr..)
as the composite of the functor (2.4.1)) followed by V7j.. By [LLHLMal, Proposition 5.4.3] we see
that T}, is a fully faithful functor if u + 7 is n-generic Fontaine-Laffaille.
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If R is an F-algebra, by the main result of [FL82, Théoréme 6.1] we have a fully faithful con-
travariant functor
* i FLM(R) — Reph(Gk)

cris

(see also [HLMI17, Theorem 2.1.3]).

Remark 2.5.1. Note that the definition of Fontaine-Laffaille modules, Definition is a bit
more general than the one in [FL82], since the original definition of a Fontaine-Laffaille module
M in [FL82] further requires min{i € Z | Fil' M = 0} —max{i € Z | Fil' M = M} < p — 1.
However, we still have a fully faithful functor T? . : FLAT(R) — Reph(Gr) with our definition,
Definition which is a minor variation of the results in [FL82] Théoreme 6.1] by twisting an
appropriate Lubin—Tate character.

We further define the map

— —~ ~ Tl "
(2.5.2) Poin: FL7(R) — [FLy/~T-h.cnj] (R) —— FLY"(R) —= Rep}(Gk)

(where the first arrow is the natural quotient map, and the second is described in Proposition m

above). We write p,, y., for the image of x € FL7(R) under the map above.
For convenience, we record the effect of the functor T7,;, on Fontaine-Laffaille modules of rank
one, which will be used later.

Lemma 2.5.3. Let M be a Fontaine—Laffaille module with F-coefficient. Assume thFLt M has rank

one; for each j € J, let A\j1 € [0,p — 2| be the unique integer such that arhit (M) £ 0. Then
i Xe_i1pd

T:ris(M”[K i waJEJ f—3,1P '

Proof. This is a direct consequence of [FL82, Théoreme 5.3(iii)]. O
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3. THE GEOMETRY OF ﬁj

In this section, we construct and study an explicit partition Py on FLs by locally closed
subschemes of FL 7.

Throughout this section, R denotes a Noetherian F-algebra. Since all schemes are defined over
Spec F we omit the subscript erp from the notation when considering the base change to F of
an object o defined over O (e.g. GL,, r will be denoted by GL,, and so on). This shall cause no
confusion.

3.1. A partition on FL 7+ Recall that FL denotes the representative for the sheafification of the
functor R — U(R)\GLy(R) on the fpgc site of Noetherian F-algebras.

In this section, we introduce an explicit partition P on FL which admits a natural interpretation
related to the usual Bruhat decomposition on the flag variety (see Proposition . At the end
of this section, we use the partition P on FL to define a partition Py on FL 7.

We write n & {1,...,n} and denote the power set of n by p(n). Let S C n be a subset. For each
A € GL,(R) we write fs(A) for the minor of A with rows in {n —#S+1,...,n} and with columns
in S. For each w € W and each A € GL,,(R), our convention says that the i-th row (resp. the i-th
column) of A is the same as the w(i)-th row of wA (resp. the w(i)-th column of Aw~!). Note that
for each subset S C n the function f,s) can be identified with the composition

GL, -% GL, 15 Al

up to + signs. For each S C n, it is clear that the map fg : GL,, — A! descends to a map of
schemes

fs : .7':2 — Al.
For each S C n, we let Hg C FL be the vanishing locus of fg. From now on, we will consider

intersection, union and complement of constructible subset(s) of FL£. We use the notation -¢ for

the complement of a subset of n, or the complement of a constructible subset of FL. For each
K C p(n), we define the locally closed subscheme

Crk = (HsN () Hs.
SeK S¢K

Note that Cx can be empty for certain choices of K C p(n).

Lemma 3.1.1. The subschemes Hg and Cx satisfy the following elementary properties.
(1) If K,K' C p(n) with K # K', then Cx N Crr = 0;
(2) FL = UKgp(n) Ck;
(3) For each S Cn, Hg = Jgex Ck s
(4) For each K C p(n), Nger Hs = Ugcr Crrs
(5) Cy is the unique element in P which is an open subscheme of FL.

Proof. These are immediate consequences from the definitions. O

We define P to be the set of non-empty locally closed subschemes of FL of the form Cp for some
choice of K C p(n). By Lemma the set P forms a topological partition of FL by reduced
locally closed subschemes.
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Let Se denote a sequence n =51 D Sy D --- D S, satisfying #5; =n—i+1forall 1 <i < n.
For convenience, we call a sequence S, as above a strictly decreasing sequence. For each w € W,
we associate a strictly decreasing sequence S, ., by

Siw =w ' {ii+1,--- ,n—1,n})

for each 1 < i < n. By abuse of the notation, we also write S, ,, for the subset of p(n) consisting
of S; for all 1 <4 < n. Then it is easy to see that there is a bijection

(3.1.2) W — {strictly decreasing sequences}, w s S 4.
For a € ®* we write u, : U — G, for the projection to the a-entry.
Lemma 3.1.3. For each w € W, the natural projection
woBwow = TwoUwow =T X woUwow —» T

is given by the restriction of

(3.1.4) Diag (£f61,/5 s L5 f5 o F s )
and the composition
woBwow = TwoUwow = T x woUwow — woUwow = U 22 G,
is given by the restriction of
(3.1.5) + fswo(i)ﬂ,wu{w—1w0(i/)}f§;0(i)yw

for each a = (i,i') € @ with 1 <1i <4 < n. Here + means up to a sign.

Proof. This is a simple computation of minors of matrices in woBwow(R). O

For a strictly decreasing sequence S, we define the following open subschemes of FL:

(3.1.6) M = () Hs,

1<i<n

If the strictly decreasing sequence is given by S, ., for some w € W (which is always possible from
the bijection in (3.1.2)) we write Mg, for Mg_ . Note that My, is a topological union of elements
of P. More precisely,

(3.1.7) M= | Ck.

KCS58.w

Moreover, we observe that (| M3, = Cp is the unique element in P which is an open subscheme
weW

of fZ We also consider
(3.1.8) My < Csg,

which is clearly a closed subscheme of MS,. By computing different minors of matrices in Tw(R),
one easily check that M, is actually the schematic image of Tw in M¢,, both characterized by the
vanishing of fg for all S ¢ Se .. We now see that the open subschemes M; have a more familiar
description in terms of Schubert cells.
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Lemma 3.1.9. Let w € W. Then we have

(3.1.10) M, = U\UwoBwow,
and
(3.1.11) Hs, 1., = U\UsiwoBwow

for each 1 <i<n-—1, where s; = (i,i+1) € W.
Proof. The RHS of (3.1.10)) is clearly inside the LHS as for all 1 < i < n we have
(3.1.12) fsu #0

on woBwow ¢ GL,, and hence on U\UwyBwow < FL. Conversely, any matrix A € GL,(R)

= =

satisfying (3.1.12]) for each 1 < i < n can be written as uwpbwow for some u € U(R) and b € B(R),

and thus the LHS of (3.1.10) is also in the RHS. Hence the equality (3.1.10)) holds. It follows from
the definition of M, (3.1.10) and the property of Bruhat stratification that

n—1 n—1
U Hsipy 0 = (My) = (U\UwoBwow)® = |_| U\Uw' Bwow = U U\U s;wo Bwow.
i=1 w’ <wg i=1
Hence we observe that both sides of (3.1.11)) are irreducible components of (M), and it suffices
to notice that fs, , # 0 on U\Us;woBwow for all k € n\ {i + 1} by using Lemma and the
fact that
U\U s;wo Bwow — U\UwyBwgs;w < woBwgs;w,

which completes the proof. O

Lemma 3.1.13. Let A € GL,(R). Suppose that we have a sequence ) C Sp, C Sp—1 S -+ C

Sk © 58" C n such that #Sy =n+1— ¢ for each k < € < n. Assume further that fs(A) # 0 cm:l
fs,(A) #0 for each k < £ < n. Then there exists i € S"\ Sy, such that fs, ;1 (A) # 0.

Proof. Upon replacing A with Aw for a certain w € W, we may assume without loss of generality
that

Sp={4....n—1,n}
for each k < ¢ < n. We may assume further that S’ = n by replacing A with its submatrix given
by {n — #S +1,...,n}-th rows and S’-th columns. Then there exists u € U(R) such that the
submatrix of uA given by {1,...,k — 1}-th rows and {k,...,n}-th columns, is zero. We consider
the submatrix A" of uA given by {1,...,k — 1}-th rows and columns. Using that fs/(A4) # 0 and
fsi(uA) = fs,(A) # 0, we deduce that det(A’) = fs/(A)fs, (A)~" # 0, and that fg, 1y (A4) fs, (4) 7
equals the (k — 1,7)-entry of A’ for each 1 <i <k — 1. As det(A4’") # 0, there exists 1 <i <k —1
such that (k — 1,7)-entry of A’ is non-zero, and hence fg, ;3 (A) # 0. O

Proposition 3.1.14. Let ¥ C p(n) be a subset contained in some strictly decreasing sequence.
Then we have

(3.1.15) N He= |J Ms,
Sex SeDX

where Se Tuns through all strictly decreasing sequences that contain X. In particular, the set
{MS,}ew forms an affine open cover of FL.
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Proof. The inclusion 2O follows from the definition of Mg,. We now prove the inclusion C by induc-
tion on #X. It suffices to show that, for each A € (\gcy, HG(R), there exists a strictly decreasing
sequence S, containing ¥ such that A € Mg (R). We pick an arbitrary A € (goy HG(R). If

#3 = n, we can simply take S Ly 1t #3 < n, then by Lemma [3.1.13| there exists ¥/ C p(n)
satisfying the following conditions:

(1) X' is contained in a certain strictly decreasing sequence;

(2) X' DY and #Y = #X 4+ 1;

(3) AeNgesy HE(R).
We apply our inductive assumption to ¥’ and obtain a strictly decreasing sequence S, containing
¥ (hence X as well) such that A € Mg (R). This finishes the proof of the inclusion C.

It follows from (3.1.10) that M, = U\UwoBwow = B as a scheme, hence it is affine. The fact
that
FL= (M,
weW

is the special case of (3.1.15) when ¥ = 0. O

Lemma 3.1.16. Let K C p(n) with Cx # 0. Then

(i) for each strictly decreasing sequence Se, we have Cx C M, if and only if Se N K = ();
(ii) there exists a strictly decreasing sequence Se such that Cx C Mg, ;
(i) p(n) \ K= |J Se and the following equality holds
SeNK=0

Cx = m/f‘[sﬂ m M?g.;

SeK SeNK=0
(iv) Ck is affine.

Proof. Note that follows directly from the definition of Cx and M§, . In order to prove

and |(ii1), we pick an arbitrary A € Cx(R) for some Noetherian F-algebra R. It follows from
Lem (by taking k = 0 and ¥y = n) that there exists a strictly decreasing sequence S,
such that fs,(A) # 0 for all 1 <i < n. This means that S¢ N K = ) and hence Cx C Mg, by
which implies It follows from Proposition (for ¥ = {S}) that, for each S ¢ K, there
exists strictly decreasing sequence S, containing S such that fs,(A) # 0 for all 1 < i < n. Hence

Crx € Mg, CH or equivalently S € Se € p(n) \ K. We deduce that p(n)\ K = |J S,, which
S.QK:@

implies (using the definition of Mg )
N Ma= (1 #Hs=[1Hs
SeNK =0 5€SeCp(n)\K S¢K

Hence we finish the proof of using the definition of Cx. Finally, note that Mg, is affine for
each strictly decreasing sequence S, and it is easy to see that [ Mg, appeared in ((iii)| is still

SeNK=0
affine, so that follows from O

Let Q C ®* be an arbitrary subset of the set of positive roots. We write Ug C U for the closed
subscheme of U defined by the condition that the a-entry is zero for each o € @\ Q. It is clear that

the composition wTUquw’ < GL,, — FL factors through wTUquw" — M ., as for each S € S 1w
the function fg is invertible on wTUqu’ .
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Lemma 3.1.17. The schematic image of wTUquw' in MS, , is integral of the form

M 0 () Hs

for some K C p(n) with K N Se yu =0, and is a topological union of elements of P. If moreover
Cix # 0, then Ck is the unique element of P that is an open subscheme of the schematic image.

Proof. Upon shrinking 2 to a smaller subset, we may assume without loss of generality that
(3.1.18) UwTUqw' = U x (wTUqu")

or equivalently, w(a) < 0 for each a € Q, and in particular wTUqw' is naturally isomorphic to its
schematic image in M ,. Hence the schematic image of wTUquw’ in M, is integral as wTUqw’
is. We may rewrite

wTUgw' = woT (wowUow ™ wo)woww' — woTUwoww'.

Upon modifying notation, it suffices to show that the schematic image of woTUquwow in M;,
(written X for short) is a topological union of elements in P, for each Q C &' and each w € W. It
follows from Lemma, that the projection
woTUwow — U 22 G,
is given by
-1
fSwo(i)+1,wU{w71w0(i’)}fSwO(i),w ’wOTUwOw

for each o = (i,4') € @ with 1 <4 < i’ < n. Therefore we conclude that woTUqwow is the closed
subscheme of wyTUwyw characterized by the condition

fSwO(i)H,wU{w’lwo(i’)} =0

for each a € T \ ©, which implies that the X is characterized in M¢, by the same condition. In
other words, we have
X=M;n (] Hs
SeK

where K; & {Suo()+1,0 U {w two(i')} | v € @\ Q}. In particular, X is a topological union of

elements in P. Now we define K & {S Cn| fs|]x =0} and note that K; C K C p(n). As X is an

integral scheme, we may write Lx for its function field and notice that fg|x is a non-zero element
in Lx for each S ¢ K. Consequently, the open subscheme Cx C X equals the non-vanishing locus
of [] fs inside the integral scheme X. In particular, Cx is the unique element of P which is an

S¢K
open dense subscheme of X. The proof is thus finished. O
Definition 3.1.19. For w,u € W we define

S°(w, u) o U\UwBu = U\BwUu C FL

and write S(w, u) for the closure of S°(w, u) inside FL. We call S°(w, ) (resp S(w, u)) the Schubert
cell (resp. the Schubert variety) associated with the pair (w,u) € W x W.

Proposition 3.1.20. The partition P ofj-"f is the coarsest common refinement of the partitions
{8°(w,w) }wew for all w € W. In particular, each Cx with Cx # 0 uniquely determines a map

0 : W — W such that B
Cx = () S°(6(u),w).
ueWw
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Proof. We use the notation P’ for the coarsest common refinement of the partitions {S°(w, 1) }wew
for all w € W, and we will show that P’ coincides with P.

We recall from Lemma[3.1.9|that both #g and H§ are union of elements in P’ for each () # S C n.
This implies that each element of P (which is defined by intersection of locally closed subschemes
of the form Mg or H$) is a topological union of elements in P’. Hence P’ is finer than P.

As a special case of Lemma we deduce that each Schubert cell S°(w, u) = U\UwTUu is
a topological union of elements in P. This implies that P is finer than P’.

We have already shown that P = P'. Now we fix a Cx # 0. Then for each u € W, as
{S°(w,u) }wew is a partition of FL, there exists a unique 6(u) € W such that Cx C S°((u), u).
Therefore we have
(3.1.21) Cx C () S°(5(u), ).

ueW

But the locally closed subschemes of FL of the form N S°(8(w), u) for some & : W — W clearly
ueW

form a partition of L (note that () S°(8(u),u) could be empty for some choice of §). Indeed, they
ueW
exhaust all possible elements of P’. As we know that P = P’, the inclusion (3.1.21]) is necessarily

an equality. Hence we finish the proof. ]

3.1.1. Product structures. We recall the set J from § For each K7 = (K;)jes C p(n)/, we
define the following (possibly empty) locally closed subscheme of FL 7

def
Ck, = (Ck, )Jej

Hence we obtain a partition Ps on FL 7 by locally closed subschemes of the form Ck,. Note
that Cr, is stable under the shifted 7T-conjugation action (defined in equation ({2.2.5)). We would

frequently use the notation C C FL 7 for an arbitrary (non-empty) element of the partition P.
For each ws € W we also define

def ——  def -
M, = [ Ms, and My, = [ Mo,
JjET JjET
It is clear that My, , is open in FL 7, and M, ., is the unique element in Py which is a closed
subscheme of My, . Again, by letting

S°(wy,uz) HS wj,uj) and §(wj,uj)d:ef1_[§(wj,uj)gﬁj
JjeJ jeg

for elements wy = (wj)jes,us = (uj)jey € W, Lemma generalizes and we see for instance
that

Mfy; = g‘o(wo,wowj).
As each element of Py is contained in one of My, (see Lemma [3.1.16)), we deduce that M.y,

exhausts all elements of the partition P which are closed subschemes of FL 7, when wz runs
through the elements of W. We use the notation fg ; for the composition

(3.1.22) FL, %, Fr I, Pl

where Proj; is the projection to the j-th factor.
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We end this section by studying the relation between Pz, P and the base change map BC :
FLg — FLy introduced in §

Lemma 3.1.23. Let C € Py. There exists a unique element C' € Py such that BC (C’) =C.
In particular, Py is the partition on fﬁj induced from the partition Py on Fﬁj/ by pulling back
along the embedding BC.

Proof. If C = Cg, for K7 € p(n)/ then we pick C’ o CKIJI with K';, € p(n)!" characterized by
K 7, f K for each j' = j modulo f. All the other claims are clear. O

3.2. Niveau partition. In this section, we introduce a new partition {Ny, }w,ew on FL mo-
tivated by the notion of niveau for mod-p Galois representations. Roughly speaking, two mod-p
Galois representations arise from the same N, , if and only if they have the same semisimplification.
The main results of this section are Propositions [3.2.14}] |3.2.15( and |3.2.18] We fix throughout this
section a A € X} (T') with A 4+ 7 being Fontaine-Laffaille (see Definition

The following description of semisimple Galois representations arising from FL 7, with weight
A+n= (N +1j)jes, is well-known.

Lemma 3.2.1. Letx € fzj(IF) be a closed point such that py »i, ts semisimple. Then there exists
wy € W uniquely determined by x such that
x € My, (F) and p, syl =7 (w7, A+ ).
Proof. Let
(M, {Fil" M}, {dan 1) € FLYT(F)
be a Fontaine-Laffaille module attached to  and C be the (unique) element of Ps such that
x € C(F). Recall that K’ is an unramified extension of K with degree r = n!, and thus we have

ﬁx,)\—&—n’GK/ = @zn:lﬁi
for certain characters p; : Gg» — F*. We write G, 7 for the F-scheme given by the product of
f'-copies of G,,, and for an element u € X*(G,,)!" we have the map

ﬁ:c,u : Gm,J'(F) — RepllF(GK')

(obtained from the map in the case when n = 1 and K taken to be K'). We set y & BC(z) €
FL 7/(F) and write \' = ()\;,) jregr € X*(T) for the image of A under the diagonal embedding (see
the very end of § for the map ﬁé) Therefore we can choose, for each 1 < i < n, a point
7; € Gy, 7/(F) such that p,, , = p;. Here y; € X *(G)f" is a weight uniquely determined by p;
and A + 7. We write
(Mxiv {Fﬂh Mxi}h? {be,-,h}h) € FL!IM (F)

for the rank one Fontaine-Laffaille module of weight u; attached to x;. Hence there exists an
isomorphism

n

(3.2.2) (My7 {Fﬂh My}h’ {Qby,h}h) = @(Ml‘w {Fﬂh Ml‘i}h’ {¢$i,h}h)

i=1
inside FL) ¥ (F) where (M,, {Fil" M, }1, {¢y.n}1) is the Fontaine Laffaille module of weight \' + 7/
attached to y. We write v = (vjr)jieq & (1, -y ptn) € X*(IT") and assume without loss of

generality that vp = Aj + 7). Since M,, has rank one, choosing a basis £, = (,Bgl))jle g for
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M, = Hj’ej' Mgl) is the same as choosing a non-zero vector ﬁg) e Mé{l) for each j' € J'. There
exists s = (sj7)j7eqr € W" such that

R It S AV !
Vit =Sp_q e Spny s Sy (A )

for each 1 <i < n and j' € J’, and hence

ﬁx,)\—i-nhK = ﬁy,/\’-l-n"IK/ = @zn:lﬁih;(/ = ?(5.7’7 N+ 77/)

according to Lemma (describing T, in the rank one case) as well as Definition m For
each j' € J', we claim that

iy def ;o4 7 _ _ _
5@(,] )= (ﬂ:gjl . aﬂcg;]n)) ' Sf’l—l - 'Sj’}&-l : ijl
is the unique permutation of the basis { 69(5{/), ceey 59(5{: )} of Méj /), which is compatible with the Hodge

filtration of M, (see also Definition 2.2.4). As ¢, sends gr® M,, C gr® M, to M,, C M, for each

1 <i < n, the matrix of ¢y = {¢y n}n : gr*(M,) — M, attached to the basis 3, def ( éj/))j/ej/ lies
in

(" - wg)(F) € G"(F)
with wy = (wjr) e defined by

-1
def [ 1 1 1 -1 -1 —1
'lUj/ = (Sf/—l...sj/-i-l) . <$f/_1"‘3j/+1‘$j/ ) :Sj/ .
In particular, we have y € M,, ,+(F). Finally, the fact
y € BC(C)(F) N My, (F) # 0

together with Lemma [3.1.23| implies that there exists wy € W such that C = M, , and wy is
the image of wy under the diagonal embedding W < W". Hence we finish the proof by the
identification of representations of Iy = Ik

T(sgr, N +0) =7(w, N +n) =7(w;', A +n)
which follows directly from the Definition [2.1.2 O

Let P O B be a standard parabolic subgroup of GL, with standard Levi subgroup M and
unipotent radical N. Let P~ C GL, be the opposite parabolic subgroup satisfying PN P~ = M.
(Be careful to distinguish our notation for the Levi subgroup and a Fontaine-Laffaille module.) We
write Wy C W for the Weyl group of M, embedded inside the Weyl group W of GL,,. Then there
exists a positive integer 79 with 79 < n and a tuple of integers (n,,)1<m<r, partitioning n such that
M is the image of the standard embedding

GLy, x -+ x GL,, — GL,.

nro

Given a point = € ﬁg(]F), we say that z is P-ordinary if there exists p : Gg — P~ (F) such
that p, i, = 0. We write grp_(p, r4,,) for the isomorphism class of the composition of p with
P~(F) - M(F). (Note that the appearance of P~ is due to the fact that T}, is contravariant.)
Thanks to the full faithfulness of T7 ., = is P-ordinary if and only if the following holds: there

exists a filtration by Fontaine—Laffaille submodules

(323) 0 Q Mx,l Q to Q Mm,ro—l Q Mm,ro = Mz

such that the k& ®p, F-module M, ,, C M, has rank n,, def Yoty ng for all 1 < m < rg. Note that
the above implies that 7, , has image contained in P~ (F) and furthermore the n,},-dimensional
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G i-representation T7; (My ) is isomorphic to the quotient of p,, ., induced from the standard
surjective morphism P~ — GLn$ forall 1 <m <rg.

Lemma 3.2.4. Let x € ﬁj(F) be a point. Then x is P-ordinary if and anly if there exist
A= (AY)cs € G(F) and us = (uj)jes € W such that x is the image of A in FL7(F) and

(3.2.5) AY) € u;Pul
forallje J.

Proof. We only prove the = direction as the opposite direction can be proved by reversing the
argument. Consider the increasing sequence of Fontaine—Laffaille submodules attached to x, written

as in (3.2.3). We write as usual M, = Hjej Mggj) and My ., = Hjej ME)n for each 1 < m < 7.
We choose a basis 8 = (5(j))jej of M,, compatible with the Hodge filtration of M., in the
following way. Write 3\) = {69), o ,57(1])} for all j € J. For each j € J, we choose B,ij) by an

increasing induction on k. Assume for the moment that we have chosen 5? ), ey Bl(gj_) , for some
1 < k < n such that ﬂ%j), .. .,6,(5_)1 forms a basis of Fil’\f’”("_k)“MgEj), then we want to choose

the next vector B,(cj ). We define my, as the smallest integer satisfying 1 < my < rg and

Filikt=k) pr0) o pr0) - o st =R+ 0 rG) o pr0)

T, mg NUY

As (Fil)‘j”“Jr("*k)M(j) MY an)/(FilAj wt(n—k+1) o1l A Méjy)nk) is one dimensional and is a subspace
of Filtist(n=h) prl )/ FildstH(n—kt1) 3 r0) , which is also one dimensional, we have

k=R 17 G) A As0) k=R G) — st (k) 370)
(3.2.6) (Fil MY A MY) )+ Fil MY = Fil M.

T,mg

Hence, we choose an arbitrary non-zero vector

5](:) c Fﬂ)\j,kJr(n*k)M(]) N M \ Filist(n— k)JrlM(]) N Mag 121

k

and note that Blj ), cee ﬂk necessarily forms a basis of Fil™ Kt =k) pr U) thanks to (3.2. 6f). Accord-
ing to the choice above, it is clear that 3 is compatible with the Hodge filtration of M. '
We consider an element uy = (uj)jes € W and the following reordering g - 1(u 7) = (BY) .

uj—1)jes of the basis 3, where B8 -u;_1 is the basis of Mggj) given by ﬁg) (1) By () ) Now
i1
we observe that, for each j € J, there exists u;_1 such that for each 1 < m < rq the hst of vectors
)
(3.2.7) By 6u] @) ,/5’ Lk

()

forms a basis of M,’, inducing a basis compatible with the Hodge filtration on the quotient
Méjm/M 9 We write A = (AD));c7 (resp. A1 = (Ag]))jej) for the matrix of ¢, (induced

rm—1"

from {¢y .1 }n) attached to the basis 8 (resp. 8-71(uz)). It follows from 1.' that A(j) € P(FF)
for each j € J, which implies (3.2.5)) as we have Al) = UjAg )uj_ll for each j € J. O

Lemma 3.2.8. Let © € FL;(F) be a P-ordinary point, and let uy = (uj)jeg € W be as in
Lemmal[3.2. If there exists

Ay = jej € H u]MQF1
JjeJ
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whose image y in FL(F) satisfies Pyrtn = 8p—(Pyrtn), then there exists t = (t9)) ;e € T(F)
and
A= (AD)eq € T] wiPu; L\ (F)
JjeJ
such that the image of A in .FNEJ(F) is x and the image of A under

(3.2.9) H UjPU;_11(F) - H UJMU;—ll(F)
jeg jed

is Aot (cf (B2:3)).

Proof. This is a simple refinement of the proof of Lemma [3.2.4] in the sense that we can choose

the basis 8 more carefully. We write M, g L) C M, for convenience. According to Propo-

sition our assumption on Ag € [[;c7u;M u]__ll (F) simply means that there exists a basis
of the Fontaine-Laffaille module @°_, My 1, /My m—1, written grp(f8), such that it is compatible

m=1
with the Hodge filtration and the matrix of Frobenius attached to the basis grp(f) is given by
Ap. We recall from the proof of Lemma that the basis - 77! (uz) satisfies the condition
that forms a basis of M, ,, for each 1 < m < ry. Therefore the basis -7 1(uz) induces
a basis of @,°_; My m /My m—1 which is compatible with the Hodge filtration by our minimality
assumption on the length of u;_; (see Lemma [3.2.4). It is clear that, given the basis grp(3) of
Do My m/Mym—1, we can always choose the basis § as in Lemma with the extra require-

ment that the basis of @.°_; My /My m—1 induced from - 71 (uy) is exactly grp(3). We write
Al = (Agj))jej for the matrix of Frobenius {¢, 0x}r under § and write x; for the image of A;
in ﬁg(]’f“) Hence the image of A; under (3.2.9) is Ag. As A;p is constructed from M, by a
choice of basis (compatible with Hodge filtration), it is clear that p,, yi, = Py 14, and there exists

t = (tU));er € T(F) such that = x1 - t. Hence we set A 4" 4, -t and finish the proof. O

We use the notation w!} = (w']’-)jej with

def
(3.2.10) w?- = Wj - Wj—1*" Wj—f+1
for each wy = (wj);ey € W. Note that w?_l = wj_lw;wj for each j € J.

Definition 3.2.11. We say that a Levi subgroup M’ C GL,, is W-standard if its conjugation by an
element of W is standard. We define M,, as the minimal W-standard Levi subgroup that contains w
and call it the Levi subgroup associated with w. Note by definition that we have M,,,,—1 = uM,u !
for any choice of w,u € W.

Each element w € W induces a partition of n = {1,...,n} into orbits of w. For each Noetherian
F-algebra R, M,,(R) C GL,(R) consists of those matrices whose (7,¢')-entry is zero if i and ¢’ lies
in different orbits of w. We have the following useful observation from Definition given an
element w € W and a W-standard Levi subgroup M’ C GL,, such that M,, C M’, then M’ = M,
if and only if the number of Levi blocks inside M’ equals the number of orbits of w.

Given two elements wy = (wj)jes, ugs = (uj)jes € W and a standard parabolic subgroup of
P C GL,, with standard Levi subgroup M and unipotent radical IV, we observe that the composition

H TujNuj*le -G — ﬁj
JjeT
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factors through

H TujNuj_le — My,

JjeT
For each j 6 J, if we assume that u;leuj,l € M, (in which case we have uJMu 1= u]Mu W
and u]Pu —1 = uPu; w;), then TuJ«Nuj_le is the fiber of

uj-Puj__l1 —» ujMuj__l1
over Twj.
Now we return to the set up of Lemma We assume further that there is no strictly smaller

standard parabolic subgroup P’ C P such that z is P’-ordinary, which implies that grp— (5, \4y)

is semisimple. It follows from Lemma [3.2.1| that there exists y € M, (F) for some wy € W such
that grp- (D aty) = Pyasy As My, is the schematic image of Tw 7 in /\/l , we may choose

Ap € Twy(F) whose image in M, , (F) is y. Then it follows from Lemma that there exists
Ae uquj__ll(F) and t = (t9)) e 7 € T(F) such that the image of A under 1) is Ag-t € Twy(F),

and the image of A in FLy is x. It is clear that Ay € Twz(F)N]]jes u]Muj__ll(IF‘) which implies
that
uj_leuj_l e M
for each j € J. In particular, we deduce that
—1, b ~1 -1 -1
uj wiug = (g wiuj—n) - (W wjmruj—2) - (WG i) € M

b

for each j € J. Then we observe that the number of orbits of u;leuj, which equals the number

of orbits of w?, which (by Lemma ) equals the number of irreducible direct summands of
gt p— (Py r4y), Which finally equals the number of Levi blocks of M. It follows from the paragraph
after Definition [3.2.11] that we must have

M-, =M
’LLJ ’LUU]

for each j € J. Consequently, we arrive at the following definition.

Definition 3.2.12. For each wy € W, we define Z,,, C {wy} x W as the subset consisting of
pairs £ = (w7, u7) such that Mul—lwb_uj is a standard Levi subgroup of GL,, independent of j € 7,
J J

written Mg, and such that u;leuj,l € M; for each j € J. Note that there exists a unique
standard parabolic subgroup P: € GL;, containing M and we denote the unipotent radical of P
by N¢. For each element & = (wyz,uy) € 2y, we define V¢ as the schematic image of

H Tu]‘Nguj_le

JjeTJ
in Mg,
Remark 3.2.13. For a fixed wy € W, the following closed subscheme of G
H ungujill
JjeEJT

does not depend on the choice of { = (w7,uy) € Zy,. In fact, this directly follows from the
observation that (see Definition [3.2.12] for the properties of )

) -1 _ -1, ..
ungujfl —unguj W —UjMuj—l b u] w] M bwj
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for each j € J. Given two pairs { = (wz,uz), § = (wgs,u';) € Zy,, one can show that Ve = N

if and only if
H ungu;_ll = H u; Per (u;_l)_l
jeTJ JjeJ

if and only if M¢ = Mg and uj_lu; € Wy, for each j € J.

Proposition 3.2.14. A point x € ﬁj(F) belongs to Ne(F) for some § € Zy,, if and only if

Ponenlie ZT(wz' A +1).
Proof. This follows directly from Lemma and the discussion right before Definition|3.2.12, [
Proposition 3.2.15. Let { € Z,,,,. Then N¢ is integral, and

(3.2.16) Ne=TI (Mo, 0 () Hs

jeT SeK;
for a uniquely determined K7 = (Kj)jes C p(ng) with Cx, # 0 and K; NS¢, =0 forallj € J.
In particular, N¢ is a topological union of elements in Py.

Proof. The fact that N is integral, the equality (3.2.16), and the unique existence of K follow
immediately from Lemma [3.1.17, which together with Lemma |3.1.1} and (3.1.7)) implies that N is
a topological union of elements in P. O

Definition 3.2.17. For each wy € W, we define N,,, as the topological union of Ng¢ for all
£ € By, As Ng is closed in M, s for each £ € 2, Ny, is naturally a reduced closed subscheme
of Mg, .

7

Proposition 3.2.18. The set of locally closed subschemes {Ny; }w,ew forms a topological parti-
tion of FLy. Moreover, a point x € FL7(F) belongs to Ny, (F) if and only if

pis)\+77‘fK = ?(w}17 A+ 77)-

Proof. 1t follows from Lemma that, for each x € FL;(F), the semisimplification of P Atn

has the form 7(w>', X\ + 1) for some wy; € W. Hence the desired result follows directly from
Proposition [3.2.14] and the definition of N, . O

Remark 3.2.19. Given wy € W, the scheme N, is not irreducible in general. As N, is topological
union of the integral schemes N¢ for all { € 2y, each irreducible component of Ay, , must have
the form N¢ for some £ € Z,,,. The converse is not true, namely there exist wy € W and £ € 2y,
such that N is strictly contained in some irreducible component of N, ., (see for example the case
wyg = 1). One can prove that Ng is an irreducible component if and only if there exists x € N¢(F)
such that p, 5, is mazimally non-split, namely each non-zero semisimple subquotient of p, 5, is
irreducible.

3.3. Standard coordinates. In this section, we further fix some notation that will be frequently
used in later sections. In particular, we introduce a standard coordinate on N (see ) for
each wy € W and each § € E, .

We fix a choice of wy € W and £ € E,, (as in Definition and use the usual notation
M¢, N C Pr for the subgroups of GL, associated with {. We write @g C ®* for the subset
such that Ne C U is the closed subscheme characterized by the vanishing of the a-entry for each
acdt\ o/l
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We associate a tuple of integers n® = (ni)lgkgrg with Mg such that n = >"¢ n,i and

Mg = GLn§ Xoee GLnff

where 7¢ is the number of Levi blocks of M¢. We set

m—1 m
(3.3.1) [mle d:ef{k\1+zn§gkgzng}
d=1

d=1
for each 1 < m < r¢. For each o = (ia,1,) € <I>g, there exists a unique pair of integers (hq, ¢ )
such that iq € [hale, iy € [lale and 1 < hy < €y < 1¢. We consider the set q)éLTs of positive roots

of GL,, and there exists a natural map <I>2r — @JéL given by
e

a > (ha,ly)-
We often call a root v € CI%L% a block as it corresponds to a block (subgroup) of N¢, and v can be
written as v = (h, £) for a pair of integers satisfying 1 < h < £ <.
We set
Ngj oo ujNguj_l NU and Ng_,j o ujNguj_l NwoUwy.
Note that multiplication inside w]\@u{l induces an isomorphism of schemes
New=! = Nt N—. =~ N* -
uilNew; ™ = Ne jNe j = Nej X Nej-

We deduce from Definition [3.2.12 and the definition of FL 7 that the composition

H TN, jwj — H TUjNguj_le — Ne

JjeTJ JjeJ
induces an isomorphism
(3.3.2) I 7N ws = Ne.

JjeT

Note that the LHS of (3.3.2)) is a closed subscheme of G, and thus (3.3.2)) is a standard way to lift

the subscheme Ny C FL 7 into G.
We now define

Suppe 7 = {(o,5) € BF x T | uj(a) < 0}
and
Suppe ; &' Suppe 5 1 (0F x {7})
for each j € J. We note that Supp ; is closed under the natural addition induced from <I>E+, for
each fixed j € J. We would abuse the notation Supp, ; for the corresponding subset of <I>Z (by

omitting j) whenever necessary. For each 1 </ <n and j € J, we write Déj g for the composition

of the following morphisms
(3.3.3) DY) s Ne = [ TNgwj - TN jw; — T — Gy,
JjeT
where the last morphism is extracting the /-th diagonal entry. Similarly, for each (c, j) € Supp; 7,
we also consider the composition
(a7-]) . ~Y - -
u™ s Ne = [] TN jwj — Nej — Ga
JjeJ
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where the last morphism is extracting the u;(«)-entry. Given a rational function g on FL 7, if the

regular locus of g is an open subscheme of 7L 7 that contains Ne, we write g|x; for the restriction
of g from its regular locus to Ne. It is not difficult to see that (see (3.1.22)) for notation)

80,0

(334) Dé‘j{? = :I: and uéazj) — :I: Uy (7'04)“'1710] wj Uj(ley) 5]
; fSe+1,wj J Ne fSuj(ia),wj J N

Here 4+ means up to sign, depending only on w;. Note that (3.3.2) together with various Déjg and

a,j) . . .
ué 7) induces an isomorphism of schemes

(3.3.5) Ne 2T x (Ga)#suppsﬂ.
We also denote by SuppgD the image of Supp, ; under the composition
(3.3.6) <I>g X J —» @g - cngrg

For each v = (h,0) € ®},; and each j € 7, we set
i3

def .
SuppZJ = {(a,j) € Suppe 7 | ha = h, lo =}
and ot
Sur}, = Supo] 1 Supoe .
Note that we have
(3.3.7) Suppg’j +0e=ye Supp?.

Fix £ € Ey;, and let A be a subset of Supp, ; with A its image in Supp?. For each j € 7, we
write N, ;(R) for the subset of N, ;(R) consisting of the matrices whose u;(a)-entry is non-zero

if and only if (o, j) € AN Suppg ;. This defines a locally closed subscheme Neaj © Ne e Similarly,
we write Vg € N for the fiber of (3.3.5) over

H Gy, X H 0
(. d)EA (e,j)€Suppe, 7\A
where 0 C G, is the closed subscheme given by the zero point. In other words, the morphism
uéa’j) : Ne = G, restricts to uéa’j)\/\/&l\ i Nea = Gy, if (o, 5) € A and to uéo"j)b\/{’A : Nea — 0
otherwise. We notice that the isomorphism induces an isomorphism

H TNg_,A,jwj = Nf,A-

JjeJ
Note that the isomorphism ({3.3.5]) restricts to an isomorphism
(3.3.8) Nea 2T x (Gp)*A,

It is also easy to see that {Ng}acsupp, , forms a partition of V¢ by integral locally closed sub-
schemes.

Lemma 3.3.9. The scheme N¢  is a topological union of elements in Py.

Proof. This follows immediately from Proposition [3.2.15( and (3.3.4)). O

Lemma 3.3.10. Let £, &' € 2y, be two elements, and let A C Suppe 7 and N C Suppg: 7 be two
subsets. Then Nea N Ngar # 0 if and only if Nea = Nerar.
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Proof. Using the identification My, == Hjej woBwow; where wy = (w;)jes, we may naturally
embed both Mg o and N s into Hjej woBwow;. Then the locally closed subscheme N¢ 5 (resp.
Ner pr) of Hje 7 woBwowj is characterized by the vanishing or non-vanishing of each single entry,
which can be read off from an arbitrary element of the intersection Ng p NNgr pr(F) # 0. The proof
is thus finished. O

Remark 3.3.11. It follows from Lemma B.3.10] that
U {Nea | € €Bw, and A C Suppe 7}

WJEE

forms a partition of FL J-
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4. THE INVARIANT FUNCTIONS ON FL 7

Recall that the quotient of FL 7 by shifted T-conjugation parameterizes isomorphism classes
of mod-p Galois representations which are Fontaine—Laffaille of weight A + 7 (Proposmon
In § 4.1| below, we introduce a set of rational functions on FL 7 that descend to [.7-"5 J/~T-sh. an]
and call them the invariant functions. Our main goal is to show that invariant functions separate
F-points of the stack [FL/ ~T-sh.cnj|, Damely each z € [FLs/ ~T_sh.cnj] | (F) is uniquely determined
by the set

{g(z) | g is an invariant function which is regular over z} C F.

To achieve this, we firstly cut FLs along the partition {Ng¢a} (see Remark and then
give an explicit construction of the geometric quotient Ne p/~7.sh.cnj ([Sta20, § 04AD]) in §
(Proposition , which guarantee the existence of the geometric quotient C/~7.gh.cnj for each
C € Py satistying C C Ng p. Then we introduce Statement in § [4.3] as a convenient sufficient
condition for invariant functions to distinguish F-points of [C/~7_¢h.cnj] (see Statement [4.1.11)). The
proof of Statement (and thus of Statement [4.1.11]) will occupy the entire §[5], § [6|and § |7} and
will be finally completed in § (Theorem and Corollary .
Throughout this section, by R we mean a Noetherian F-algebra.

J

4.1. Definition of invariant functions. In this section, we introduce the set of the invariant
functions as rational functions on FL 7 and then give the first precise statement on how they

distinguish points in the stack [./7-:2 J/~T-sh.cnj] (see Statement {4.1.11]).
Consider the set

(4.1.1) n; <nxJ.

There is an action of Z/f on J (with a € Z/f acting by j +— j —a on J), which induces an action
of Z/f on W with a € Z/ f acting by

(wj)jeg = (Wj—a)jes
for each wy = (w;);ey € W. Consequently, we can form the semidirect product
WX Z/f
with the multiplication given by
(wg,a) - (W, d') = (wjwj_4)jeg,a+d)

for (wz,a),(w';,a’) € W x Z/f. Hence, the group W x Z/ f has a right action on nz given by

(4.1.2) (k.5) - (wg,a) = (w;t(k),j —a)

for each (k,j) € ny and (ws,a) e W X Z/f.
Let I7 C ng be a subset. By abuse of notation, we often write I; = (I;);es where

LE{1<k<n|(kj) els}Cn.

We consider an element wy = (w;)jes € W and a subset 17 = (I;)jes C ny satisfying
(4.1.3) I;=17 (wg,1).

(Equivalently, _I(I ;) = Ij_1 for each j € J.) We recall from 1) the notation fg ; for each
SCmnandje j We let S. w; be the strictly decreasing sequence corresponding to w; via ,


https://stacks.math.columbia.edu/tag/04AD
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and define the following morphism (with Mg, == g“}(wo, wowy))

fs

ef k, W 7.7 °

(4.1.4) [ o M, — G,
(k,j EI Slc+1 w 2J

which can be viewed as a rational function on FL 7. Here, we understand that fg = 1 for

n+l,wj
all j € J. The rational function f, 1, is called an invariant function on FLy. If I7 = ), we

understand f,, ; 1, to be the constant function 1 on FL 7- Note that f,, 1, always determines I 7
but not wy in general. For example, if [7 = n7, then we always have f,,n, = dets for each
wy € W, with det s defined by

(4.1.5) dety : FLg = G, (AV)jeg — [ det(AD).
JjeTJ

For each choice of wy € W and Iy C ng satisfying (4.1.3)), we write % oo ns \ I7 and

Z]J I, for the intersection of the regular loci of fy,; 1, and fy Ie, as rational functions on FL 7.
Hence, the morphism fo,, 1, @ Mg, g, G,,, extends to a morphlsm ./\/lw I, G,,. Note that

MZ}J, = MZJJ,I; and that the set {fw .1, fij;} can be recovered from the open subscheme

wy, Iy 1t is always Atiue that My, - € M, but the inclusion could be strict in general (for
example, My, = FLy for each wy € W).

For each I C n, we can decompose n into a disjoint union of a minimal number of sets of

. . . . . . . def . .
consecutive integers each of which sits either in I or in I¢ = n\ I. We can associate a standard Levi

subgroup M7 C GL,, with each set of consecutive integers corresponding to a Levi block. Note that
we have M; = Mjc. Hence, applying the construction to I.; = (I;)jes we obtain a standard Levi
subgroup M;, = (Mp;)jes € G whose associated Weyl group is denoted by W, = (Wp,)jes € W.

Lemma 4.1.6. Let wy € W and let I Cny satisfy . We have the following:
(i) If w'; € W and I\’7 C nyg satisfies then fu,1, = fw:y’f& if and only if 17 = I'; and

wf7€wj WIJ J

In particular, if C € Py is contained in M;
ccm,
c My,

w7 then there exists wf7 € wg - Wi, such that

Proof. For convenience, in this proof we write
If S {kelj|k-1€}and I; S{kelf|k—1€I}

for each j € J. There is a unique way to write f,, 1, (resp. f“’fw ]/j) as a rational function with
coprime numerator and denominator, each of them a product of fSk,wj ,j for certain choices of k € n
and j € J. More precisely, fSk,w]- j appears in the numerator (resp. in the denominator) if and
onlyif k € I ]+ (resp. if and only if k € I i ). We observe that f, 1, = f“’iw r, is equivalent to the
condition that I = I’; and that Sy ., = Sk,wg. for each k € I]'-F LI, and each j € J. Hence
follows from the observation that w}lwfj € Wi, if and only if Sy, = Skvw} for each k € I;r Ui
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and each j € J. Concerning (i), there exists ./\/lfu 1 S FL for each j € J such that

wju H Mw]’

JjeT

Writing f.,; 1, as a rational function with coprime numerator and denominator, we see from the

definition of ./\/lfﬂj’ I and Proposition [3.1.14] that

Mo, 1, ﬂ HG = U M3,

Se¥; Se D%

(4.1.7)

(4.1.8)

(taking X to be X; o {Skw, | k € I+ LI} in loc. cit.). Then a crucial observation is that Se 2 ¥;
if and only if S¢ =S¢ s for some w € W satisfying w; w € Wy,, which together with (4.1.7) and

finish the proof of The last part is 0bv10us from (i1) O

Lemma 4.1.9. The rational function fy, 1, descends to fﬁj/NZ_sh.cn‘]‘ for each wy € W and
I7 C g satisfying .
Proof. For each Noetherian F-algebra R, we use the notation
t=(t9)jes € T(R), A= (AY)cq € G(R)
and recall the right action of T
G(R) X T(R) = G(R), (A,t) = A-t = ((t9F)) 7AW 7.

We define X as the fiber of G — .?:\E/J over MijJJ and abuse the notation f, , , for the
composition

Jugi, i X = M;, — Gy

wylgy
It suffices to show that

(4.1.10) fwg1,(A-t) = fu,1,(A)

for each A = (AU));c7 € X(R) and t = (tV));c7 € T(R). For each (k,j) € ny, we write t,(g) for
the k-th diagonal entry of tU). We observe that

ISt (LT )71 AD0)y = (1)~ t(J) ISy (AW).
f5k+1,wj J )fSk+1 wjoJ
This together with (4.1.3]) implies (4.1.10) by taking product over all (k,j) € I 7. O

We set
Ian—ef{wa[j |wj eW,I;Cny, I7- (wj,l) :Ij}.
For each C € Pz, we write Inv(C) C Inv for the subset consisting of those f,; 1, which are invertible
over C (namely C € My, ;). The set Inv(C) induces a morphism of stacks

et [C/~T-shenj] — (G #v (),
The following is the main property satisfied by the set Inv(C).

Statement 4.1.11. For each C € Ps and Noetherian F-algebra R, the following map induced
from ¢

I[C/~T-sh.cnjl| (R) — (R*)#v(€)

18 injective.



MODULI OF FONTAINE-LAFFAILLE MODULES AND MOD-p LOCAL-GLOBAL COMPATIBILITY 42

We will deduce Statement [4.1.11] from Statement 4.3.2)) (to be introduced in § whose proof
is very involved and will occupy § [5§ [6] and § [7]

4.2. From stacks to schemes. Recall that we expect the set of invariant functions Inv(C) to
satisfy Statement which a priori involves the algebraic stack [C/~r_gh.cnj]- In this section,
we give an explicit construction of the geometric quotient Ng,A /~T_sh.cnj in Proposition
which implies the existence of the geometric quotient C/~7_gh.cnj. This allows us to introduce a
convenient sufficient condition for Statement in § Note that N 5 is a topological union
of elements in Py (see Lemma (3.3.9).

We fix an element { = (wz,uz) € 2, for some wy € W throughout this section.

4.2.1. SuppgD as a graph. We recall the set Supp5D - (ngrg from the end of § We can associate

an undirected graph &, with SuppgD in the following way:
e the set of vertices of &¢, written V(&¢), is in bijection with {1,...,7¢};
e the set of edges of &, written E(®¢), is in bijection with SuppE, so that there exists an
edge connecting two vertex h < £ if and only if (h, /) € Suppg.

Similarly, we write E(-) (resp. V(-)) for the set of edges (resp. the set of vertices) for an arbitrary
graph.

Definition 4.2.1. Let & C &, be an arbitrary subgraph. A directed loop inside &, written I, is
defined to be an ordered pair of non-empty subsets E(I')", E(T')~ C E(®) satisfying the following:

e we have ZyeE(Fﬁ = ZvEE(F 7

e we have either F(I)TNE()” =0 or E(I')" = E(I')~ = {} for some vy € F(®); and

e for any proper non-empty subset E* C E(I')* (resp. E~ C E(I')7) we have Y pi v #
ZVEE_ -

If " is a directed loop we also define V(I') C V(&) as the subset consisting of all the elements
m € V(&) such that at least one of (m,m’) and (m’, m) belongs to E(T')* U E(T")~ for some choice
of m' € V(®). Note that if E(I')*NE(T")~ = 0, then this notion of directed loop in Definition [4.2.1]
coincides with the usual one, namely picking up a connected subgraph of & which is homeomorphic
to a circle and then equipping this subgraph with a choice of direction such that the in-degree and
out-degree of each vertex are one. In other words, we extend the usual notion of directed loop by
allowing some degenerate cases when E(I')* = E(I')~ = {~} for some v € E(®)

4.2.2. Functions invariant under shifted T -conjugation. We recall the set n s from and, for
1 < m < r, the set [m]e from (3.3.1). We also recall from that there is a right action of
W xZ/f onng. We write ((wz, 1)) for the cyclic subgroup of W x Z/ f generated by (wz,1). We
define

157 S {(k.9) | uj ' (k) € [mle} € ng
for each 1 < m < re. We also define

(4.2.2) e ] DY) Ne— G
(k,j e[’!n

for each 1 < m < r¢, where Déj ,)c was defined by equation (|3.3.3)).

Lemma 4.2.3. The map m ~ I} gives a bijection between {1,...,r¢} and the set of ((wz,1))-
orbits inside ng. In particular, I'7 depends only on wy and not on §.
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Proof. Let (k,j) € I'} be an arbitrary element, and thus uj_l(k) € [m]e. It follows from Defini-

tion |3.2.12) that u;_llw;luj = (u;leu]-,l)_l € M. Hence uj*_llw;luj stablizes [m]¢, from which
we deduce that
ujywy (k) = (uytywy ) (ug (k) € [mle.

Thus we have (k,j) - (wyz,1) = (wj_l(k),j — 1) € I'7. Consequently, I'} is a disjoint union of
((wzg,1))-orbits.

Now we fix an element (k,j) € I’} and count the cardinality of the ((wz,1))-orbit containing
(k,j). Let ¢ be the minimal positive integer such that (k,7) - (wz,1)¢ = (k,j). According to
definition of the action of (wy,1), it is clear that there exists b > 1 such that ¢ = bf and that

(k,j) - (wg,1)¢ = ((w;)*b(k:),j). In other words, we have

(4.2.4) ui (k) = (wwhu; ) "oust (k)

and b is the minimal positive integer satisfying (4.2.4]). Then it follows from Definition [3.2.12 that
M,  ».,—1 = Mg, which together with uj_l(k:) € [m]¢ imply that b = #[m]¢ = né,. Hence we deduce
J

that the cardinality of the ((w, 1))-orbit containing (k, j) equals #I7 = fn?n, which implies that
I'7 forms a single ((wz,1))-orbit. Hence we finish the proof. O

If (k1,71), (k2,72) € I'7 for some 1 < m < r¢, we define

(4.2.5) [k, 1), (k2. j2))wy = {(k1, 1) - (wg,1)7 |1 <@ < b} C I

where 1 < b < f’ is the minimal possible integer that satisfies

(k2. j2) = (k1, 1) - (wg,1)".
It is easy to see that the definition of ](k1, j1), (k2, j2)]w, depends only on ws and not on §.

Now we recall the graph &, from § and pick a directed loop I inside B¢ (see § for the
definition of a directed loop).

Definition 4.2.6. A pair of disjoint subsets QF, Q= C Supp; 7 is called a lift of T" if QT (resp. Q7)
maps bijectively to E(T')" (resp. E(I')”) under the surjection Suppg, 7 — Supp?. Given a subset
A C Suppg 7, we say that a pair QF, Q" is a lift of T supported in A, if it is a lift of I' and
QF, O C A. We say that a pair QF, Q™ is a A-lift if it is a lift supported in A of a directed loop
inside &¢.

We use the shortened notation QF for the pair of sets @+ and Q. Note that if E(I')/* = E(I'")~ =
{~} for some v € SuppE, then to choose a lift QF of I is equivalent to choose two distinct elements
in SuppZy 7

We use the notation a = (i, i,,) for each a € ®T. We consider a directed loop I inside & as
well as a lift QF of it. Let m be an element in V(T'). If we write m — m/ (resp. m’ — m) for
the edge of a directed loop I' indicating the direction by —, we write (a,j,5) € QT U Q™ (resp.
(a,,,4m) € QT Q™) for the element corresponding to the edge m — m' (resp. m’ — m) under
the surjection Supp, ; — Suppg. Namely, there exists an element (o}, j,5) (resp. (a,,7,)) in
QF U Q~ such that the following holds:

(m,m’) (

o (af jt)e Suppe 7 ' N QFt if m' > m, and (o}, j,5) € Suppgt?’m) NQ~ if m' < m;

(m’,m)

o (o, jm) € Suppg 7 N Qt if m' <m, and (o, j;,) € Suppg}’m/) NQ~ if m' >m.
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Then we set

o | ujs(ias) ifm' >m;
for each e € {+, —}. Note that we have u;.l(k:;zi ) € [m]e for each e € {+,—}. We define

s T o8 NG

+
mEV(F) (k,j)elg m

where

(4 92 8) IQi,m def { ](kg;i,m7j;1)’ (kgi’mvj"r—’r—b)]wj if (kgsi’m?]r;) 7é (k;;ijmvjr—z);
L. Ka = @

if ( 5i7m7jnz) = (kgi7m7j$>7

for each m € V(I'). We also define

(00,4)
(4.2.9) g @ Liagiear e
o (0,4)
o j)ea ue
Then we set
OF def Z0Fp  L0E
(4.2.10) FE SR R

Hence F, Eﬂi is a rational function on J\fg.

Lemma 4.2.11. The rational function F&.Qi descends to [Ng/~r.sh.cnj] for each choice of lift O+
of some directed loop I' as above. Similarly, the function Fgm descends to [N¢/~r_sh.cnj] for each

1 S m S Te.
Proof. We only prove the case of Fgﬂi, as the proof for F g” is simpler. We write X C N for the
open subscheme defined by the condition that uéa’j ) # 0 for each (a,j) € QT LUQ™. In particular,

X is inside the regular locus of FgQi and we only need to prove that
O+ O+

for each A = (AV);c7 € X(R) and t = (tY));c7 € T(R). We write tV) = Diag(tgj), . ,tﬁf)) for
convenience. Then we observe that

: 1)\ 1,0 j
(4.2.12) DA 1) = (1) tg;_l(k)Dgll(A)

for each (k,j) € ny, and

*1t(j) u(a’j)(A)

@ g4y — (4@
(4.2.13) ud (A1) = (t —luj@-a)) (i) e

w.
J

for each (a,j) € Suppg ;. It follows from (4.2.12)) and the definition of If;i’m (see (4.2.5) and

[{:2)) that

() _ (G ~1,G%) ()
II  pda-n=(m,- m)) o K ) | RCY

o, J ’ . ,
(kj)ely ™ " " (kj)ely
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for each m € V(I"). It follows from (4.2.13)) and (4.2.9) that

) —1,()
. TRy
poaa gy = 20 Coin) b oy 0
3 L. . (t(J) )_lt(]) £
()€™ Vi tu; (i) wy tug (i)
Hence, it remains to prove that
j -1,()
— ; H(a Jleqt (tgzlu- i ) twflu- i
H (ti(jjll)(kf ))*1ti}]r}1)(k+ ) (]j) J( 04) — (j]) J( a) _ 1’
mev(r) dm 0T stheetmd | 1o ea- (twgluj-(w) b s 1)

which is a consequence of (4.2.7)). Hence we finish the proof. O

4.2.3. Ezplicit geometric quotient. Let A be a subset of Supp, ; with A" its image in Supp?, and
recall the definitions of Ng x C N¢ from § E We recall from @) the rational function FﬁQi on
Ne. If OF is a A-lift (see Definition 4.2.6)), then ng clearly restricts to an invertible function on
Nea. We abuse the same notation FgQ for this restriction. Similarly, we also abuse the notation

F{ (see ) for its restriction to Ng a. In the following, we will use functions of the form FgQi
and Fg” to explicitly construct the geometric quotient Ng} A/~T-sh.cnj in Proposition

We can naturally associate a subgraph &¢, C &, with the subset AP C Supp. We fix a
choice of a subset B C A that maps bijectively to a subset of A", denoted by B, under A — A"
such that the subgraph of &¢ 5 corresponding to B" is a maximal tree (a not necessarily connected
maximal possible subgraph such that the underlying topological space of each connected component
is simply connected). As a result, for each v € A there exists a unique directed loop Iy 5 inside
B¢ a (see Definition such that E(I', 5)* UE(T, 5)~ € BZU{y} and v € E(I', 5)*. For each

element (o, j) € A\ B with + its image in A”, there exists a unique A-lift Q?Ea B of I'y 5 such that

Qa,j),B Qs EBU {(a,j)} and (o, j) € Q&J%B. Then we set
+
(.d),B def 1 a),5
(4.2.14) FGE e,

Now we consider the following morphism
PeA ./\/’571\ — G:ri X G#LA_#B

given by (Fg, . ,Fgf) on the first r¢ coordinates and (Fg(aj\’j)’B)( en\s for the rest. We pick a

.j)
subset n'fj - ngy satisfying #.(nyﬂl"}l) = #I1} —1for each 1 <m < 7¢ (and hence #n'fj = fn—re¢).
Then we consider the morphism

den: New > Gl x G

given by (Déj;)(k j)ent, OD the first fn — r¢ coordinates and (uéa’j))(a’j)eg for the rest. It is clear

that pe o depends on the choice of B and g¢ o depends on the choice of B and n?. We write O(Nga)
(resp. O(Ng.a)™) for the ring of global sections (resp. for the group of invertible global sections)
on NMea. We also write O(Ng A)Lm¢ C O(Ngp) for the subring consisting of global sections
invariant under shifted-T-conjugation. We understand monomials to have degrees in Z.

Lemma 4.2.15. The morphisms pe n and q¢ 5 induce an isomorphism of F-schemes

Pe.A X ge A - N&A l> ann X G#LA
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Proof. First of all, we notice by (3.3.8)) that there is an isomorphism
Ng} A= Ggln X G#lA

given by (Dg/z)(k,j)enj on the first fn coordinates and then (uéa’j))(a’j)el\ for the rest. We observe

that O(Ng,a)*/F* is a free abelian group with a basis {Dglz | (k,j) € ns} and {uéa’j) | (q,j) € A},
and moreover that O(Ng a)* /F* admits gnother basis given by {F¢" | 1 < m < re}, {Dgz | (k,j) €
n?j}, {Fé(cj\’])’s | (a,7) € A\ B} and {uéa’j) | (o, 7) € B}. Hence the morphism pg o X ge A is clearly
an isomorphism between two split tori induced from a change of basis in O(N¢ p)* /F*. O

Lemma 4.2.16. There exists a natural transitive T-action on the target of qe n such that q¢ 5 is
T-equivariant, with respect to the shifted T-conjugation action on Ne .

Proof. Let x = (2, 2") € GL' e x G#P(R). We define a T-action on Gl e x GEP by:

. 4 = (V) .
x(kvj) fwj_l(k)x(kvj)7 x(avj) t (tw;lu](za)) wj_luj(iil)x(avj)

where 2% = (x(k,j))(k,j)enbj € G,]ZL_T&(R), and 2 = (T(qj))(a,j)eB € G#LB(R). (Note that this
defines an action on both Gﬁf—rg and G#LB.) Using (4.2.12) and (4.2.13) we see that g¢ o becomes

T-equivariant.

We are left to show that this action is transitive. We pick two points z = (2%, 2%),y = (y*,y") €
G x GEE(R).

We start with the following simple observation. For each s > 1 and each pair of points a =
(an)1<n<s—1, b = (bp)i<n<s—1 € G5 1(R), we can define ¢ = (¢)1<p<e € G5,(R) by ¢ = 1 and

Ch+t1 et ahbglch for each 1 < h < s — 1, which then satisfies
b= (C;}rlahchhghgsq-
We can apply this simple observation to ($(k,j))(k,j)enf7m’; and (?/(k:,j))(
once for each 1 < m < r¢, and then find a ¢ € T(R) such that
(4.2.17) % =y,
We denote the center of M by Z¢ and consider the embedding

Ny o~ With s = #IT
k“m])enjmlj # ’

(4.2.18) ket Ze =T, 20 (ujzu; ) jeg

The decomposition of M into Levi blocks induces an isomorphism Z; = G,s and we write z =

(21, -+, 2 ) for each element 2 € Z¢(R). Note that for each (k, j) € nz, we have u;lefl(k), u;}l(k) €

[m]¢ for some 1 < m < r¢ (see Definition [3.2.12]). An easy computation then gives
(4.2.19) Y™ = y>® - ke(2)

for each 2z € Z¢(R).
Recall that BY is the image of B under Suppe, 7 — Suppt (or A — AP). For each vy = (h,¢) € B~
with preimage (., j) in B, we deduce from equation (4.2.13) that

uéa'vvj'v)(A - ke(2)) = Zﬁlzguéa’y’j’Y)(A)

for each A € N¢A(R) and z € Z¢(R). This determines (via g¢ o and k¢) the action of Z¢ on GHE.
Note that the set BY (upon abuse of notation) is a tree inside the graph &¢ x, and hence G#ﬁ
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decomposes along connected components of BY. Note that the number of connected components
of the tree is r¢ — #BY. By splitting both z" - t* and y" into subsequences indexed by connected
component of B, we can apply the simple observation above for each pair of subsequences indexed
by the same connected component of B~. Hence we find an element z € Z¢(R) such that z% - ¢’ -

re(z) = y". Together with (4.2.17)) and (4.2.19) we obtain

x-tb-mg(z) =y.

Hence we finish the proof. O

Lemma 4.2.20. Assume that F' € O(NE,A)I_Sh'an NO(Nga)* is a monomial with variables {Déjlz |
(k,j) €ng}. Then F is a monomial with variables {an}lgmgrg'

Proof. Upon multiplying F' by an elements of the form
I e
1<m<re
for some (dy, ... ,drg) € 7"¢, we may assume without loss of generality that F' is a monomial with
variables {Dg,l | (k,j) € n'f7} Then the fact F € O(Ng )L together with (4.2.12)) implies

that, if Déj,z appears in I for some (k,j) € I}, it must appear for all (k,j) € I'?. As n?ﬂ[j}I c 17
for each 1 < m < r¢, we conclude that F' must be a constant. The proof is thus finished. ]

Lemma 4.2.21. Let F € O(Ng p) 0% 0 O(Nea)* be an element with the degree of uéa’j) given
by some n(, jy € Z, for each (a,j) € A. Then we have

Z Z n(aJ) Y= 0.

~eAHP (a,j)EAﬂSupng

Proof. We recall that Z¢ acts on N (and thus on O(N¢ o)) via the composition of the shifted-
T'-conjugation action and x¢ from (4.2.18). The desired vanishing follows directly from (4.2.13)

and the fact that Z¢ fixes F' € O(Ng )L (as uéa’j) is an eigenvector of the Zg-action with
eigencharacter +, for each (a,j) € AN Suppgj). O

Lemma 4.2.22. The abelian group
(O T2 N OWe ) ) /F
is freely generated by {F¢"}1<m<r, and {Féa’j)’B | (o, 7) € A\ B}.
Proof. Tt suffices to show that each F' € O(Ng p)T5% 0 O(Ng o)* has the form
CTL e TI e
lsmsre (e, d)EMNB

for some ¢ € F*, (d1,...,d;,) € Z"¢ and some (d(q,j))(a,j)eA\B € Z#A=#B_ 1t is clear that F is a

7)

(ag)
monomial (with various degrees in Z) on the variables {DEJ ,1}(“)6“ , and (uéa

convenience, we write Fg(a’j B 41 for each (ar,j) € B. Assume that uéa’j ) has degree n

)(a,j)en- For later
) in F,

a,)
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for each (v, j) € A. Then it follows from Lemma [4.2.21|and the choice of B (with B~ being a basis
for the Z-span of A") that

y DB lam
H (uéaj)(Ff(aJ) ) 1) CF))
(a,5)€EA

is a monomial with variables {Déj z}(k,j)En - Consequently, we obtain an element

o def F H (Fg(a’j)’lg)_n(a’j) c O(./\/’f,A)Z_Sh'an N O(N§7A)X
(ovg)€A

which is a monomial with variables {Déjlzt}(kJ)EHJ' Then it follows from Lemma 4.2.20 that F” is

a monomial with variables {an}lgmgr5~ The proof is thus finished. O

Proposition 4.2.23. The following properties of pe o hold:

(1) pea is T-equivariant, with respect to the shifted T-conjugation action on the source and the
trivial T-action on the target;
(i) the geometric quotient Ne A /~T-sh.cnj exists and pe p induces an isomorphism

Nea/~T-shenj = Gy x GEA#E,
Proof. Part |(i)| follows directly from Lemma 4.2.11
We now consider part It suffices to check that

® p¢ A induces a bijection
NE,A(R)/NZ(R)—sh.cnj — (RX)TE X (RX)#A_#B

for each R;
® p¢ A induces an isomorphism

O(Gr§ x GEN#E) &5 O(We 1) T C O(Nn)-

The second item is clear from Lemma as pe,A is exactly the morphism between two split tori
induced from the following homomorphisms of free abelain groups

TTE % Z#Af#B Ay (O(N&A)X N0 O(./\/%7A)I-Sh'cnj> /FX C O(N&A)X/FX

with the map defined by {F{"}i<m<r, and {Féa’])’B | (a,j) € A\ B}. It remains to check the
first item. It follows from Lemma and Lemma that pea X gea is a T-equivariant
isomorphism. Now we pick two points Ay, Az € Nga(R) satisfying pea(A1) = pea(A2). By
part [(i)| we have
Pea(Ar - 1) = pe a(A1) = pea(Az)

for any t € T(R). From Lemma we deduce that there exists ¢t € T'(R) such that g¢ A (A2) =
gen (A1) -t (= gea(Ar - t)). We conclude that (pea X ge,a)(A1-t) = (pe,a X ge,n)(Az), which implies
Ay = A; -t by Lemma [£.2.15] g

Corollary 4.2.24. The geometric quotient C/~rp.sh cnj exists for each C € Py satisfying C C Ne .

Proof. This follows immediately from Proposition [£.2.23] In fact, the shifted T-conjugation action
on Nga stablizes each C € Py satisfying C C Ngx, and the existence of Nga/~7.sh.cnj clearly
implies that of C/~7_gh.cnj- O
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4.3. Main results on invariant functions: statement. In this section, we introduce a conve-
nient sufficient condition (see Statement |4.3.2)) which implies Statement [4.1.11
We fix a choice of wy € W and § € Z,, and let A C Supp ; be a subset with AP its image in

Supp?. We write O(X) (resp. O(X)*) for the ring of global sections (resp. the group of invertible
global sections) on a F-scheme X. Recall the subset Inv(C) C Inv from the paragraph before

Statement L1171
Definition 4.3.1. We write Og, for the multiplicative subgroup of O(Nga)* generated by —1

and Dgg for all (¢,5) € ny. We say that two elements F, F' € O(Ng ) are similar, written as
F'~ F', if there exists " € O, such that F' = F'F". We write Og for the restriction of Og) to
C and define F' ~ F’ similarly for two elements F, F’ € O(C). We define O}, as the subring of O(C)
generated by OF and g*le for all g € Inv(C). Then we define O¢ as the localisation of O, with
respect to O, NO(C)*.

Now we introduce our main result on invariant functions whose proof will occupy §[f §[6and §[7}

Statement 4.3.2. We have
+
F¥le € Oc
for all A-lifts QF (cf. Definition .
Lemma 4.3.3. Statement[[.53.9 implies Statement[f.1.11]

Proof. 1t follows from the existence of geometric quotient C/~7_¢h.cnj (see Corollary (4.2.24) that
there exists a canonical bijection

HC/NI-Sh-an] ’(R) 1> C/NI—sh.cnj (R)
for each R. Hence Statement holds if and only if ¢¢ induces a monomorphism
(4.3.4) C/NZ—sh.cnj N GiInV(C)‘

Assume that Statement holds in the rest of the proof, and we want to show that is a
monomorphism. We fix a choice of B C A as in §[4.2.3} Let 21,22 € C(R) C Nga(R) be two points
such that g(z1) = g(x2) for all g € Inv(C). It follows from Lemma that, upon replacing x2
with xg - t for some t € T'(R), we may assume further that g¢ (1) = g¢ a(22). In other words, we
have

g(z1) = g(x2) for each g € Inv(C);
(4.3.5) Dg} (x1) = D({l?,ng) for each (¢,7) € ny;
uécw )(xl) = uécw )(xg) for each (a, j") € B.

For each 1 < m < ¢, the element fw%[gn € Inv(C) satisfies

foganle= ] DY)l.

(€.9)ely
which together with (4.3.5) and the definition of n'z7 implies that Dgg (x1) = éjg x9) for each
(¢,7) € ng, and thus g(x1) = g(z2) for each g € OF;. On the other hand, for each (a,j) € A\ B,

it follows from (4.3.5), Statement and g(z1) = g(z2) for each g € O, that

Ff(a’j)’g(l‘l) = Fg(a’j)’B(@)
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and thus uéa’j) (x1) = uéa’j) (x2) (using the definition of Fg(a’j)’B). Hence we deduce that x; = 9
from (3.3.8)). The proof is thus finished. O
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5. COMBINATORICS OF A-LIFTS

In order to prove Statement we need to systematically study the set of all A-lifts. A
natural question arises: for which choice of A-lift QF and C € P satisfying C C Ne A, there exists
an invariant functions ¢g € Inv(C) such that g|¢c ~ F, gﬂi |c? This is a very delicate question in general.
To solve it, we restrict our attention to the set of constructible A-lifts (see Deﬁnition, a special
class of A-lifts which are closely related to invariant functions. The main result of this section (see
Theorem says that all A-lifts can be generated from constructible ones, and in particular it
suffices to prove Statement for constructible A-lifts. The relation between constructible A-lifts
and invariant functions will be further explored in § [ and §[7]

Throughout this section, we fixed a choice of A C Supp, 7 and write AC Suppg 7 for the closure
of A in Supp; 7, i.e. the subset consisting of all elements (c, j) satisfying the condition that there
exists a subset 2 C AN Suppg ; (depending on (a, j)) such that Z(ﬁ,j)eQ B8 =a.

5.1. Preliminary on A-lifts. In this section, we introduce the notion balanced pair as a direct
generalization of A-lifts, and then prove some elementary combinatorial results on it. Balanced pairs
are technically more convenient to manipulate than A-lifts as standard set theoretical operations
preserve balanced pairs but not A-lifts. In fact, balanced pair naturally arises when we try to write
down an element of O(Ng)* N O(Ng )L™ explicitly (see Remark .

Definition 5.1.1. We write NA" for the submonoid of the root lattice Z@éLrg generated by the

elements of A”, and write N? for the free abelian monoid with basis A. We view an element Q € N4
as a A-multi-set, namely as a collection of elements (a, j) of A each equipped with a multiplicity
N(a,j) € N. (Equivalently, () is seen as a subset of A x N such that {2 maps injectively into A under
the projection A x N — A.) We write Q" for the multi-set induced from  under the map A — A",
with the multiplicity n, of each element v € O defined as the sum of all N(a,j) over all (a, j) € £
having image v under A — A”. We say that a pair of A-multi-sets QF is balanced if

Z nj’y: Z n;vGNAD

~eQ+H ~eQ—H

where nf (resp. ) is the multiplicity of each element ~ of Q" (resp. Q7). We will frequently
use the short term balanced pair for a balanced pair of A-multi-sets, whenever the choice of A is
clear. If QF is a balanced pair, we define its norm to be

QF1= D0 adv= 3 nv

~eQ+.U ~eQ—0

Let Q and Q' be two A-multi-sets which contains («, j) with multiplicity n( and nza ;) respec-

,j)
tively, for each (a,j) € A. We define their disjoint union Q U Q' (resp. intersection Q N ]
resp. difference Q0 \ ') as the A-multi-set with the multiplicity of («,j) given by n ;) + n’(a i)
(resp. by min{n, ;) nza 71> resp. by max{n(q,j) — n’(a i) 0}) for each (a,j) € A. Given a balanced
pair QF, the balanced pair Qa[ satisfying QF = Q~ and Qp = QT is called the inverse of QF. For

Ss

each § € NAY, we write (9?2 for the multiplicative subgroup of O(Ng a)* generated by EA and
ng for all A-lifts QF satisfying |Q*| < 6. Here we use the partial order on NA" inherited from
SuppéD - (I)J(SLTE
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Lemma 5.1.2. For each balanced pair QF, there exists a sequence of A-lifts Qf, o, QF for some
s > 1 such that we have the following disjoint unions of A-multi-sets

Q= NnQ) |_|Q+ and Q"= NQ) |_|Q—.

Moreover, we have |Q§| < |QE| for each 1 < ' < s if either s > 2 or QT N Q™ # ().

Proof. We argue by induction on || with respect to the partial order on NA™ inherited from
SuppéD - (I)J(SLTE' If O N Q™ # (), then we can simply replace QF with the balanced pair QF \

Q7,07 \ QT and finish the proof by our inductive assumption.

Therefore we may assume without loss of generality that QT N Q~ = (). We pick up a minimal
(under inclusion of A-multi-sets) possible non-empty A-multi-set Qf C QF (resp. Q, C Q7) such
that the pair of sets QS—L is balanced. We observe from Deﬁnitionthat the minimality condition
on QgE exactly means that there exists a directed loop I' inside &,z such that Qac is a A-lift of
I If Qar = Q% then we must also have Q5 = Q7 and in particular the balanced pair Ot is a
A-lift; otherwise, we repeat the same argument for the balanced pair Q1 \ Qd, Q7 \ €, and finish
thei proof by our inductive assumption as the norm of Q \ Qf, Q= \ Qg is strictly smaller than
|Q~]. O

By Lemma a balanced pair QF is a A-lift if and only if QT NQ~ = () and the pair QT, Q" is

minimal (among all balanced pairs) under inclusion of non-empty A-multi-sets. Moreover, for each
balanced pair Q% which is not necessarily a A-lift, we can define

(5.1.3) P« H F "€ O(Nep)”

The function ng clearly depends on the choice of Q{E, ..., QF in general, but Lemma [5.1.4] below

shows that ng is independent of the choice of Qli, ceey Q;t up to the equivalence relation ~ on
O(Ng,a) (cf. Definition [4.3.1)).
Lemma 5.1.4. Let s1,s2 > 1 be two integers, and let Qll,.. Qlisl and Q;l,.. ins2 be two
sequences of balanced pairs that satisfy

S1 S2 S1 2

+ + - _ —

(5.1.5) L]of, =19, ad | |01, =[] %,

s'=1 s'=1 s'=1 s'=1

Then we have
S1 + EP) +
Q 0
1,s’ ~ 2,s’
[Ie" ~ T
s'=1 s'=1

+
Proof. For each a = 1,2 and each 1 < s’ < s,, it follows from the definition of Fg “*' given in

(B-1.3) that

Q /Ji e (a,j)GSZ ’ uf
! a, S ~ E a S d f a,s

(@d)”
H(aJ)eQaﬁs/ e
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Then condition (5.1.5)) obviously implies that

52

HF 15“ﬁ_ HF 25”ti

(see (4.2.9)) which finishes the proof. O

Remark 5.1.6. It is clear that we have FQi € O(Nep)* N OWNgp)Esmemi for each balanced pair
Q*F. Conversely, it is not difficult to prove (see Lemma and Lemmam 4.2.21)) that each element
of O(Nga)* N O(Ngp)E*M¢" has the form FQ for some balanced pair QF, upon multiplying a
monomial with variables {F }1§m§r§

Definition 5.1.7. Let Q@ C A be a subset. We define two subsets Io, If, of n by Ig & {(ig,7) |
(B8,7) € Q} and If, & {(zﬁ, ) | (B,7) € Q} (where we write as usual 3 = (ig,ij) for an element
B € ®T). We define Aq & (IQ\I’Q) (I \In) C IoUI,. We say that an element (4, j) € ny is an
interior point of Q if (i,7) € InN1If,. We say that Q is A-separated if for each (i, j), (¢, j) € IoUI,
satisfying ((4,4'), j) € A, there exists Q' C QN Suppg ; such that Z(ﬁu’j)egl B" = (i,7).

Now we consider a A-lift Q. We say that a subset Q C QT LUQ ™ is a AP interval of QF if it is
a maximal possible subset with image Q7 in A” such that E'yEQD v € NAY is actually in <I>E§L
Hence QTUQ™ is clearly a disjoint union of all of its A”-intervals and each AP-interval is either inside
Ot or inside Q™. Given a A -interval Q of QF, we say that an element (i,5) € Ig+ 0- U IQJFUQ,

lies in the AD—mterval Qif (i,7) € InUI,. For each subset @ C QT UQ™ C A we define QCA

as the unique subset which has no interior points and each of whose element is a sum of elements

in 2. More precisely, there exists a unique partition Q = | | AQ(QJ) such that Z( 8.1y B =
(e, 7)EQ

for each («v, j) € Q. In particular, we can associate a subset 7 C A (resp. = C A) with QT (resp.

27), and observe that exactly one of the following holds:

e Ot =0 ={(a, j)} for some (o, j) € A;
e 0" NQ~ =0 and OF is a A-lift of some direct loop inside & ¢ & satisfying \Qi\ = |QF|.

Lemma 5.1.8. For each A-lift QF, there exists a sequence of A-lifts Q1 yoo o, U for some s > 1
such that

o Of IO is A- sepamted and |Qi| < |QF| (cf. Deﬁmtwn_) for each 1 < s <s;
. FQ ~1L_ 1F s

Assume moreover that there exist (i,7), (i',7) € Ig+ua- UIgy - such that ((i,i),5) € A and
(i,7), (#',7) do mot lie in the same A -interval (hence QT LQ~ is not A-separated). Then we have

F& e (’)<‘Q |
Proof. In the following, we assume inductively that the result holds for any A-lift Qoi satisfying
either |QF| < |QF| or |QF| = |QF] and #AQSFUQE < #Aqgrua-- IFQF is A-lift with QF LIQ™ being

A-separated, then we simply set s 1 and Qli PO, Hence we assume from now on that QF LQ~
is not A-separated, and thus there exists a pair of elements (7, 7), (i/,7) € I+ o- Uy o as well
as a non-empty subset ' C A such that:

(i) ((5,7),4) € A;
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(i) (i,1") = X g0 e B am

(iii) ((¢,4"),7) is not a sum of some elements in QL Q™.

We may assume without loss of generality that the non-empty set Q' is minimal (under inclusion of
subsets of A) among all possible choices of (i, ), (¢, j). If there exists (3,7) € ' N(QTLQ™) # 0,
then at least one of the following holds

o ig#1i, ((1,i8),]) € A and ((i,i8),7) is not a sum of some elements in O+ L Q~;
o iy # i, ((i,7),5) € A and ((i,4'), j) is not a sum of some elements in O LIQ~,
which clearly contradicts the minimality of ©’. Hence we deduce that ' N (QTUQ™) = 0.
Then a key observation (based on the fact that Q' N (2T LU Q™) = 0) is that there exist two
balanced pairs Qét and Qsc such that the following holds:
. Q;’, Qy, Q;’, Q" all have multiplicity one, and Q;’ Ny = 0= Q;’ N ;
°« ' COf O
* QO UQS =0 UQ and QF UQ, =0 U
Note that the three conditions above imply (Q;’ U Qﬁ_) N (Q;r LQ-) =9
We write Q;’D (resp. Qﬁ*’D, resp. Q?’D, resp. Q;’D) for the multi-set induced from Q; (resp. QE’
resp. Qj, resp. Qb_) under A — AP (cf. Definition [5.1.1). We also write QU for the multi-set
induced from € under A — A", Note that Q"2, @, @7, @7\ 05 and 0,7\ @0 have
multiplicity one, but Q;’D and ) H might have multiplicity greater than one. Then we deduce
from the corresponding results on QF, Q;E and ' that

o 0O COf 0
o (277 Q/D) L Q+ P =E@)* and Q7 U(Q, 7\ D) = B(I)~

If ' C Q, we have Q"2 C Q. = (as A-multi-sets) and

ZV<ZV—ZV<27+ oo

ye: vEQ” VEQ;“D WEQj’D 'yEQ;’D\Q’vD
and so

IR YR SETID S
v By qeaf P

<Dt X vk Xt >

~eot veQ, P\0 veq, " ve P\a0

-3 0 X -
~EE(T)+ ~EE(T)~

If ' =, then:
e we have [ = [2F] as ( \ @) UQ, = Q" by definition of 7, 27 and
e we have #AQJHQE < #Aq+ - as:
— we have Aq = {(4,7), (//,j)} and a natural inclusion AQ;'—’QE C Ag+Lo-;



MODULI OF FONTAINE-LAFFAILLE MODULES AND MOD-p LOCAL-GLOBAL COMPATIBILITY 55

— the latter inclusion must be strict, as the equality AQ?UQE = Ag+n- would imply

AQ; ={(i,7), (¢,7)} (namely, Qj C Suppg ; and (i,i') = Z(B,j)eﬁj B), which contra-
dicts the choice of ((i,), ) as O C QF.
Similarly, if Q' C Q;, we have |Q;E| < |QF|; if Q' = Q;, we have \Qﬁ = || and #AQJUQE <
#Aq+ua--

Given these inequalities, we can apply our induction hypothesis on each A-lift in the decom-
position of ng and Qbi (obtained by Lemma : we hence get two integers 1 < sy < s and a

sequence of A-lifts Qic, ..., QF such that
QF s ot 0* ot
o I, R | ) Fe* and F" ~ H‘;,:sﬁJrl Fe's
. |Q;t,| < max{|(2§t|, |Q§E|} and Q, UQ, is A-separated for each 1 < s’ < s.
This together with Lemma clearly implies that

S
o+ 9 0 Q
F ~F PR ~ [ Fe
s'=1
So the proof of the first statement of the lemma is finished by an induction on |Q*| and #Aq+ -
as above.

As for the second statement of the lemma, we now observe that if either €' = €~ or Q' = Q;‘,
then (i,7), (i,7) necessarily lie in the same A -interval of QF (cf. Definition [5.1.7). Hence if there
exists a choice of (4,7), (i/,7) € Ig+yo- Ul o and of @ # Q' C A satisfying items |(i)[(iii)| above,
and with moreover (4,7), (i, ) not lying in the same AP-interval of QF, then we can always assume

further that €’ is minimal without losing the condition that (i,7), (¢,7) do not lie in the same
A -interval. Consequently, we have ' ¢ Q;‘, Q" which implies that \Q;t\, |Q;E| < |Q%F| and

of | % 08 <iof]
Fo ~FPF €0y
The proof is thus finished. O

Definition 5.1.9. Let Q1,9 be two A-multi-sets and v € AP be a block. We say that ; is a
A-modification with level v of Qg if there exists an embedding j € J together with subsets with
multiplicity one ), C Q, N Suppg ; for all @ = 1,2 such that the following holds:

e for each a =1,2, 34

e O\ Q] =0\ Q.
For each § € NAP, we say that ; and €y are A-equivalent with level < § if there exists a finite
sequence of A-multi-sets 1 = € 0,1 1,...,1 s = {22 such that ) o is a A-modification of 0 ¢4

jeq B = ag for an element (aq,j) € AN Suppgj;

with level vy for some vy € AD satisfying vy < 4, for each 1 < s’ < s. Here we use the following
convention, for each Q C A and each 6 € NA®, Q is A-equivalent to itself with level < §.

Lemma 5.1.10. Let Qli, Q2i be two balanced pairs of A-multi-sets, and assume that Qi" (resp. Q)
is A-equivalent to QF (resp. Q) with level < & for some § € NAD. Then we have Féﬂli(ng;t)_1 €
O3

Proof. Without loss of generality, it is enough to consider the case when Q] (resp. Q) is a A-

modification with level 7/ of Q5 (resp. ) for some 7/ < §. Following Definition we replace
the set Q, there with QF (resp. €2;), and obtain an element (o ,j.) (resp. («,j—)) and a
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multi-subset QI’/ C Qj{ (resp. O, C Q) for each a = 1,2. We let Q?{ def Q;“/, Q3 def Q;’/
(resp. Qf o o7, Q & Q,"), and note that QF (resp. QF) is clearly a balanced pair of A-

+
multi-sets satisfying [QF| < § (resp. |QF| < §). Hence, Lemma |5.1.2 implies that F % ¢ 0% and
3 4 13 &A

+
FEQ4 € (’)Zf\. Then the other conditions Q7 \ QF = Q3 \ Q3 and Q7 \ Qf = Q5 \ Q clearly imply
o + ot
that F€Ql (FSQQ )y~ Fg% (Fé24 )~!. Hence, we finish the proof. O

5.2. Combinatorics of A-decompositions. Before we define constructible A-lifts, we firstly need
to better understand decompositions of elements of A into that of A. In this section, we start with
introducing A-decompositions and more generally pseudo A-decompositions of some («,j) € A.
We attach some combinatorial data to each A-decomposition, and then use these data to study the
internal structure of the set of all A-decompositions of some fixed (o, j) € A. We show that the study
of a general A-decomposition can be reduced to that of either A-exceptional or A-extremal ones (see
Lemma, . Last but not least, we introduce the notion of A-ordinary A-decompositions and
explain how to reduce the study of A-exceptional or A-extremal A-decompositions to the ones that
are furthermore A-ordinary (see Lemmal5.2.20). All the combinatorial constructions in this section
will be crucially used in the definition of constructible A-lifts and the proof of Theorem [5.3.20] in
§ These combinatorial constructions or conditions are mainly motivated by later application

in § 1
Definition 5.2.1. Let A7 (resp. KD) be the image of A (resp. K) in SuppgD and v € @EL be a
"¢

block. For («,j) € AN SuppZJ7 a subset 2 C AN Suppg ; is called a pseudo A-decomposition of
(a, j) if the following conditions hold:

e  maps bijectively to a subset Q- C AP under A - A" and v = Z,YIGQD v

e there exist (5,7), (6',7) € Q such that ig = i, and i/’B, =1i;

o ((ia,i),7), ((i,74,),5) € A for each (i, j) € Io UI \ {(ia, J), (i, 1) }-
For each pseudo A-decomposition Q of (a, j), we write (iq1,Jj) € Io for the unique element such
that there exists (3,7) € 2 that satisfies iy = i;, and ig = ig1. For each pseudo A-decomposition

Q of (e, j), there exists a unique pseudo K—decomposition Q of (c, j) such that Q has no interior
points and each element of €2 is a sum of some elements in 2. More precisely, there exists a partition

Q= || Quy
(o))
such that Q. ;) € Suppg ; and Z(ﬁ NEQurs, B = o for each (¢, 7) € 0. A pseudo A-decomposition
) ) al,j
of (a,7) is called a A-decomposition of (c,j) if > 6,3‘)695 = «a. We write D, ) for the
set of A-decompositions of (a,j) (cf. Definition [5.2.1). For each Q € D4y, We write Q =
{((i.ert0,c-1),7) | 1 < ¢ < #Q} satisfying
o = Z'Q#Q < Z‘Q7#Q71 <0 K i971 < iQ70 = i:l.

. def . .
We set i . = iq for each ¢ > #) for convenience.

Remark 5.2.2. Recall that we have defined € twice, once in Definition and once in Defini-
tion These two definitions of O are identical whenever both definitions apply. However, a
pseudo A-decomposition is a priori not necessarily a subset of QT LI Q™ for some A-lift QF, so the
definition of Q in Definition is not covered by that of Definition
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Definition 5.2.3. Let 2, Q' € D(, ;)2 be two A-decompositions of (c, j). We say that Q is smaller
than €, written < €, if there exists ¢ > 1 such that u;(iq,.) < u;(ia ) and i~ = iq e for
each 0 < ¢ < ¢ — 1. It is easy to check that this defines a partial order on the set D), and
there exists a unique maximal element in D, ;) A under this partial order. We denote this maximal
element by Q7™ . Note that QF™ | = = {(a, j)} if and only if («,j) € A.

We fix a subset A C Suppg 7, an element (o, j) € A and a A-decomposition Q of («,j) in the
following. We write f (€, A) to lighten the notation. Now we inductively define

e a finite sequence of integers #€) = CEL > c}p > > ciw > 0;
e for each 0 < s < dy, an integer e, and a finite set of integers {ifb’l, i "’ 1} satisfying
the following
—eys > 1foreach 1 <s<dy —1;

- ((is_l’ew’s_1 =1),5) € A for each 1 < s < dy satisfying ey s > 1;

v »
- ((sz,m Cs) j)€Aforeach 1 <s<dyand1l<e<eys;
= (i L fbe) j) € A for each 1 < s < dy and each 2 < e < ey ;

-8,€4) . s

- uj(ig7cw+1) > u](zzl) > > iy ) > uj(ig,cfp) for each 1 < s < dy.

If s =0, we set

0 def #Q, e¢0 = 1 and z figy#g = iq.
Assume that cw , €y,s—1, and the set {i L., Z} L¢2=11 (with the listed properties) have been
defined for s > 1. Then we define
g def
= s ,e > .
Cp max{c Cl/’ 'S ¢ and #D wl et ),j),A_Q}

If such an integer cf’# does not exist, we stop the process and set dy, L TS cz exists, we consider
the set

Q ED((.s 16111Jg 1.

o )l cS )53),A

If the set 1| is empty, we stop the process and set d, L ¢ 1. If the set is non-empty,

but the set

(5.2.4) {m

} \ {iee 1)

(5.2.5) {ml

uj(igr1) < ujiae ), @ € D((; b in,cs),j),A}

is empty, then We stop the process and set dy, ' s and €ah,s 10, If the set 1} is non-empty,
then we define z by the equality

uj(ZQ’,l) < uj(ZQ,cprrl) Qe D((Z Ley,s—1 2.9703))7].) A} .

uj(iy') = max {Uj(iﬂf,l)

For each fixed s > 1 with b)) being non-empty, we define the integer iff by an increasing induc-
tion on e. Assume that i has been defined for some e > 1. Tf D5 e A = {((i3" ia.es,), 0) 1
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we stop the process and set e e 1f D((l’i"ﬂn,@)»i)A # {((sze, Z.Q,Cfp),j)}, we define ifp’eﬂ by the
equalit
d Y .s,e+1y . Q/ D .s,e - .
uj(iy ) = max{u; (i) | Q' € (55 g5 ) ) V(" daes ), 0) 1

The desired properties for the sequence ifb’l, . ,ifp’e””s clearly follows from the inductive definition

J— S
above. We observe that #D((f—l’ewvs*,iQ,c),j),A = 1 for each 1 < s < dy and Cy + 1 <c¢<

"
min{cfz)_l, #Q—1}, and #D( =1foreach0<c< min{ciw, #Q—1} (if €.y > 1).

d,, e
SpoCapdy, .
('Lw wrzﬂyc)d)’/\

We investigate the case dy, = 0. According to our definition, dy, = 0 if and only if either c}#
is not defined (namely #D, ;) x = 1) or ¢l is defined and the set is empty for s = 1.
However, if c}z) is defined and the set is empty for s = 1, we must have c}z) + 1 < #Q
and #D((

Consequently, dy = 0 if and only if #D, ) = 1.

i 5 A > 2 which contradicts the maximality condition in the definition of c!.
s Q‘Czll)+1)7j)’ P

Definition 5.2.6. We say that 2 € D, ) is A-exceptional if either iq; = i, (namely Q =
{(a,4)}) orig1 > i and #D((, i) )0 = 1. We say that Q € D, j) A is A-extremal if it is not
A-exceptional and satisfies

(5.2.7) Uj (iﬂvcfﬂrl) = max {uj(iQ/J) e D((i;—1,ew’s1’110’613[))’].)’/&}

for each 1 < 5 < dy.

Note that 2 € D, 4),a is not A-exceptional if and only if dy > 1 and cllﬁ > 1.
Let Q € D, j)a be either A-exceptional or A-extremal, and let ¢ = (€2, A). Then exactly one of
the following holds:

[ dw = 0;

o dy =1, c}Z]:Oandew’l:O;

o dy>1and ey, > 1 for each 1 <5 < dy.
For each k € n, we attach a subset Qy , € A. We first define the following: for each u;(in) > k >
uj(ia)

%] 4 min{k’ € {ujline) | #2> ¢ >0} U{u(i5) [1< s <dyand 1 < e < e} | K > k:}

and
def . .
k) mln{k' € {ujline) |0 < s <dy} | K > k}
We are now ready to define € ;. for each k € n (cf. Figure (1.
o If [k] = u;(iq,) for some #Q > c>1 and [k] = u](zQC%) then

i E (i ine-1),5) | #22 ¢ > ek
o If [k] = uj(in,) for some #Q >c>1 and [k] = uj(igjcz) for some 1 < s < dy then
Qi = {((izew’svm,cfp%j)} UA{((ig,ers in,er—1),4) | €5 > ¢ > ¢}
o If [k] = u;(i;)°) for some 1 < s < dy and 1 < e < ey 5 then

def . . .
Quie = {((13" de ), 4) )
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o If k> u;(iq) or u;(il,) > k, we set
Qui 0.
It is not difficult to observe that Qy 5 # 0 if and only if u;(iq) > k > u;(il,). Moreover, if Qy, 5, # 0,
there exists ay = (zwk,zipk) such that (ayk, j) € A and Qypx € D(q,, j)A-

The following lemma is the main reason for us to introduce the combinatorial data above, and

will be extensively used in § §[7.5 and §

Lemma 5.2.8. Let Q0 € D, jya be either A-exceptional or A-extremal, and let 1 = (2, A). Then
Qy 1 is A-exceptional and we have

(5.2.9) {1 Q € Day,g.as uilion) >k} = {Qypx}

for each k € n with ay ), # o and (o g, j) € A. Moreover, if Q = Q?&a;?) A then Qy = Qaaka DA
and the equality still holds for each k € n with oy, = o

Proof. If (i, lel) >k > Uj(l.Q7Ci)+1) for some 1 < s < dy, then we have D(qy o)A = {Qy.1} by

the definition of cj, and the claims are clear. The case when u; (i ) > k > wu;(il,) is similar. If

d
Q,cww «

uj(zfpe) >k > uj(ifb’eﬂ) for some 1 < s < dy and 1 < e < ey 5, then we have Qy 1, = {(ayk,7)}

which is clearly A-exceptional, and we deduce 1' from the definition of z";’eﬂ. The case when

:5,Eq),5 -S,l)

uj(iy ") = k > Uj(iQ,c;) for some 1 < s < dy is similar. If uj(ig,cfp+1) > k > u(i,) for

some 1 < s < dy with ey > 1, then €y is A-exceptional by the definition of cf/). If moreover
Qg # @, then € is A-extremal and we deduce (5.2.9) from the definition of €2 being A-extremal.
IfQ= Q’(I;a}‘) A» the claims are immediate. The proof is thus finished. O

For a given A-decomposition 2 of (¢, j) € AN Suppg 7+ we construct Qg for each 1 < s < dy

and 1 < e < ey 5, where ¢ & (©, A), as follows. We first construct an element Qg,e € D((inigy o5 )uj),A
o

for each 1 < s < dy and each 1 < e < ey 5 by an increasing induction on s. We set QFM dof @ for

convenience. Let 1 < s < dy be an integer and we assume inductively that for each 1 < sf<s—1
/’e

and each 1 < e < ey ¢, there exists a Qi/,e € D((i‘*’isz,cfp’)’j)’/\ which contains ((Zfb ,z’Q%/),j)
(and thus ig: | = 22:6) If eps > 1, it follows from the definition of iZJ’I that there exists
b o . . 5,1 - . . s
0, € D((z’fp*l’%’s‘l,igycz),j),A which contains ((i] ,m%),j) (and thus lop |1 =y ). Hence we set
def s—ley s—1 . . b
O @y, T g ), DU
Here we understand {((z'z}_l’ew’sfl,z'Q C2}71),‘7')} to be ) if s = 1. For each 1 < e < ey s — 1, there
exists Qi,e c D((iliiﬂyci))’j)’/\ such that iQi,eyl = 7:37/}76-%1’ and thus we set

def .5,e . .
Qf 1 = ({5 e ), 1) U QA

for each 1 < e <ey s — 1. For each 0 < s < dy and each 1 < e < ey, we set
def . . .

(5.2.10) Qe = QL U{((iq.e ine1),5) | 1 < e <)}

It is clear that Qs € D4 j)A-
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Lemma 5.2.11. Let (o, j) € AN Suppg’j be an element for some v € KD, and 2 € D, jyA be a
A-decomposition of (a,j). Then for each 1 < s < dy and each 1 < e < ey, Qs € D 4y satisfies
the following properties.

° (ifp’e,j) is an interior point of Qg ;

o . is A-equivalent to Qg e with level <y for each 1 < e, e’ <eys;

o Qs,e 2 {((iQ,CaiQ,c—l)aj) | 1<ce< Cf/,}
Moreover, if Q) is not A-exceptional, then € . is A-equivalent to Q with level < v for each 1 < s < dy,
and each 1 < e < ey .

Proof. By construction of ), , it is clear that it satisfies the three properties. For the last part, we

1(31/)‘5 1

write 7, for the image of (i iy ?:Q’Cfp), j) under A — AP, If Q is not A-exceptional, we clearly

have dy, > 1 and c}b > 1 and thus 75 < for each 1 < s < dy. Then we observe that ;. € D4 j)

is a A-modification of Qs_1,, ., with level 75 <« (see Definition 5.1.9) for each 1 < s < dy and
each 1 <e < ey . Hence, we finish the proof by Definition and the fact that Qo1 = Q. O

Lemma 5.2.12. Lety € AY be a block, (a,j) € AN Suppgj be an element, and Q2 € D, j) A be a
A-decomposition of (v, j). Then there exists a Q' € D4 j) o such that

o (Y is A-equivalent to Q with level < y;
o O is either A-exceptional or A-extremal;
o cither O =Q or Q < V.

In particular, Q?&a;‘) A 18 either A-exceptional or A-extremal.

Proof. We argue by induction on the partial order on Dy, ;) o introduced in Definition Now
we assume inductively that for each Qg € D, j A with © < Qp, there exists a Q e Do j).as
which is A-equivalent to € with level < ~, such that Q' is either A-exceptional or A-extremal,
and either Q' = Qg or Qy < . If Q is A-exceptional or A-extremal, then we have nothing to
prove. Otherwise, €2 is neither A-exceptional nor A-extremal, and thus there exists 1 < s < dy

and ° € D O .
((Zd) o lle,cZ)7])7

Lemma [5.2.17] and set
def s—ley s—1 - . . . . s
Qo = ( s—1,ey,s—1 \{(( et 19763*1)7.7)})quu{((lﬂ,cJQ,C—ﬁv]) | 1 §C§C¢}~

Then it is clear that © < o and thus there exists ' € D, j) o which is either A-exceptional
or A-extremal, such that Qg is A-equivalent to € with level < v and satisfies either Qg = €' or

such that w;(iq ;) > uj(ioes+1). We recall o | from

s—l,ey s—

Qo < . Tt is clear that ' satisfies all the desired properties and the proof is finished. O
s—ley,s—1 s .s,e se . N
We observe that ((i,, bt wl)) € Aforeach2 < s < dy with ey s > 1 and ((3)", 7, ™), 5) €A
for each 1 < s <dy and 1 < e < ey ¢ — 1, which implies that
(5.2.13) ((ize,iz’e ),7) €A
and thus
(5.2.14) g (050 ) (g (055, ) O (05°), ), (g (), ) oy = 0

whenever either s < s’ or s = s’ and e < ¢ holds. For each Q € D, ;) A, we set
#0-1

(5.2.15) 19 || Jwiliae), 4), (us(iae), i)y € ng
c=1
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and
dy eyp,s
— def .
(5.2.16) 1y || L0 (059), 4), (u(05°), )], € g
s=1e=1

It is clear that Ig’_ # 0 if and only if dy > 1 and ey > 1.

Definition 5.2.17. Let (a,j) be an element of A and Q be a A-decomposition of (a, 7). We say
that Q is A-ordinary if Ifg’+ N If;’* = 0.

Remark 5.2.18. If the niveau wy is ordinary, namely r¢ = n (and thus [m]¢ = {m} for each
1 <m < n), then Q is A-ordinary for each Q € D, ;) a and each (a, j) € A.

For each v € KD, (o, ) € JA\ﬁSupng and each {2 € D(q ;) 2, We define a pseudo A-decomposition
Q; of (a, j) in the following. Intuitively, Q4 is a kind of “ordinarization” of 2. We assume inductively
that 2} has been defined for each v €A, (o)) € Ng Suppg,j and ' € Dy j) A satisfying 7" < 7.
If Q is A-ordinary, we set QT ' Q. If O is not A-ordinary, then there exists 1 < ¢y < # — 1,
1 <51 <dy, 1 < ¢t < ey and 1 < mT < r¢ such that ZQ,CT,ZJ T € [myle. Tt follows from
((i;*’ef,iﬂ,cr) Jj) € A that we have ¢y > c "+ 1. We choose sy and et such that s; is maximal
possible and et is minimal possible for the ﬁxed st, and then set

0 (0 ig o)} UL (i erine).d) | 1< e < €l

We claim that Q is A-ordinary (otherw1se there exists 1 < ¢ < cT -1, 54 +1 < & < dy,
1<e <eypy and 1 < m' < rg such that 21/1 ,m,c/ € [m/]e, contradlctmg the maximality of s;).

Then we set 0 < {((i,erin,e-1),7) | 1+ep < ¢ < #Q} and note that € is defined by our inductive
assumption. Then we set

def

(5.2.19) O = QU

and note that €); is a pseudo A-decomposition of (c, j). We write (AZT for the pseudo K—decomposition
of (a, j) associated with 0+ via Definition

Lemma 5.2.20. (Properties of ordinarization) Let (c,j) € AN Supng for a block v € AP and
Y = (,A) for Q € D, jya- Then the pseudo A-decomposition ;i of (a, j) satisfies the following
conditions:

o () is A-equivalent to Q with level < y;

o Oy (v j) s A-ordinary for each (o/,j) € (AZT;

o if Q is A-exceptional and not A- ordmary, then there exists 1 < ¢y < #Q—1and1l <er < ey

such that Q4 = Q?(‘?;m o)A U {( ( ins):7)} and D((ia,m,cf),j),/\ - {Qz??f,ig,cT),j),A};
o if Q=QU 1, then Q4 (o 5) = QETY) \ for each (o, 4) € (AZT;

Qmax

o if Q) is A-extremal, then i (o ;) either equals (arg),A O is A-extremal for each (o, j) € (AZT;

e for each (5,7), (B',j) € QT satisfying ((iﬁ/,z/@),j) € A, there exists a unique subset of (4
which is a pseudo A-decomposition of ((ig, Zlﬁ),j)
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Proof. This follows from an immediate induction on « as in the construction of Q; = th U Q:
max
(G in) )

max max

resp. either equals Q( TA OF is A-extremal) if Q equals Q( A (resp. is A-exceptional, resp. is

The key observation is that Q" is A-ordinary, and equals 2 (resp. is A-exceptional,

A-extremal). Note that each element of QT is of the form ((fp ,i0,c),J) for some 1 < s < dy,
1 <e<epsand 0 < ¢ < #0—1. The last claim follows from and the fact that
((tae,iae).d) € A for each 0 < ¢ < ¢ < #Q. O
Remark 5.2.21. Let Q be a A-decomposition of some (a,j) € A. It is clear that Q4 € Da ), if
and only if 0 = € if and only if Q is A-ordinary. In other words, if €2 is not A-ordinary, then
is a pseudo A-decomposition which is not a A-decomposition. This is actually the main reason for

us to introduce the notion of pseudo A-decompositions (see Definition |5.2.1]), which is a convenient
generalization of A-decompositions that covers objects of the form {24 for arbitrary 2 € D, ;) a-

5.3. Constructible A-lifts. In this section, we introduce a key notion of this paper, namely
constructible A-lifts. The main result of this section (see Theorem says that all A-lifts can
be generated from constructible ones. The heart of the proof of Theorem [5.3.20] is to understand
precisely which constructible A-lifts are sufficient to build up all A-lifts. Note that Definition [5.3.1
is directly motivated by § § and § and the conditions in Definition precisely
ensure that there exists an invariant function (to be constructed in § @ whose restriction to Ng o
(if defined) is closely related to the given constructible A-lift.

Deﬁnltlon 5.3.1. Let QF be a A-lift. As in Definition u we can associate a subset QF
(resp. O ) of A which does not have any interior points, and we have partitions

+_ + -
(5.3.2) ot = |_|A QL yand Q7= || Q..
()t (o,5)e—

We write ¢ for an arbitrary pair in
(5.33) [, | () € B} (R0, A) | () € 0.
For each pair 1 in (5.3.3]), we use the notation €, for the first factor of the pair ¢, (o, jy) for
the element A such that €, is a A-decomposition of (ay,jy) and 7y, for the block that satisfies
(o, o) € Suppgj’&.

We say that OF is a constructible A-lift of type 1 if it satisﬁes
(i) Q+ =0 = {(a, j)} for some (e, j) € A: we write 11 & (QF,A) and 2 = (Q~, A);

(ii)) Q~ = Qmax) , and QF is either A-exceptional or A-extremal;
(iii) both Q* and 2~ are A-ordinary (cf. Definition [5.2.17));
(iv) (uj(iy,). ) ¢ Ifél’ for each 1 < s < dy, and each 1 < e < ey, satisfying u;(i;) >

Uj (7’Q+,1)7

(v) ((i,4),7), ((i',4),§) ¢ A for each interior point (i,5) of QT (resp. (i, ) of Q7);

(vi) iy e # g ¢ and ((szf, ' ) j)¢ Aforcach1 <c<#0 —1,1<s< dy, and 1 < e < ey, s
(vii) 4 'w # ig+ . and ((7 ff,zQJ, o),j) & Aforeach 1 < ¢ < #Qt—1,1<s<dy, and 1 < e < ey,

satisfying w; (i) > u;(iq+ 1)

We say that QF is a constructible A-lift of type II if it satisfies

(i) Ot = a, 7)} for some (o, j) € A and Q™ is a pseudo A-decomposition of (a0, j) (cf. Defi-
D with QT N Q™ = §: we write ¢ & (QF, A);

def

nition
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(i) Q7 is either A-exceptional or A-extremal, and Q( 5= Q?&a]) A for each (¢, j) € ﬁ_;

(iii) Q* is A-ordinary, and Qs ) is A-ordinary for each (o,§) € Q-

(iv) if there exist ¢ = (Q@,J), A) (for some (o, j) € O }) and 1 < m < r¢ such that pre fpe =

[m]e for some 1 < s < dy, 1 <e<eys, 1 <5 <dy,,and 1 <€ < ey v, then we have

i!, =i, and either u](zze) < uj(igr 1) < wjig- 1) or uj(i fﬂ ) < wjig- 1) < uj(ior1);

(v) for each (a,j) € Q7 and for each 1 < 's < dy, and 1 < e < ey, s such that if,, 7" € [m]e
for some 1 < m < r¢, we have uj(zw ) < ulig- 1) < ujigr);

(vi) ((4,7),§) ¢ A for each pair (Z,_]),( ,j) € In+uo- UIG - that do not lie in the same
AP-interval of QF (cf. Definition ;

(vii) if there exist (a/,7) € Q™ and 0 < ¢ < #8 s such that i . 7 i, and either zfpf =

(a’.3)"°
ZQ(—, e or ((Zdu i o j>,c) j) € A for some 1 < s < dy, and 1 < e < ey, 5, then we have
either u; (i} o 9 < uj(fo 1) < u](zQ+ 1) or uj(ia) < uj(in- 1) < uj(ior1);
(viii) zw # ig+ . and ((zw Vigr )i J) ¢ A for each ¢ € {(&2 () A) | (¢/,7) € Q*} and for each
1<c<#QT-1,1<s<dyand 1 <e<ey;
(ix) if QT = Q) A and u;(il,) < u;(ig- 1) for the unique (o, j) € Q~ satisfying iq/ = ia, then
Q7 is A-exceptional and ig- ; = ;11,
(x) if QF # Q) o> then we have uj(i),) > max{u;(ig- 1), u;j(ig+ 1)} for the unique (o, ) €
Q- satlsfylng T = ta;
(xi) if QF # Qr(rclta;‘) , and Q7 is A-exceptional, then for each (¢, j) € O, exactly one of the
following holds
o u;(ig) > ujiar1);
o i, =g and u;(iar) > uj(in- 1) > ujliqr 1);
[] u]‘(ia/) < uj(igil) < uj('iQ+71).

We say that QF is a constructible A-lift of type 111 if it satisfies

(i) if both ©F and Q~ are pseudo A-decomposition of some (a,j) € A, then we have QF #
{(a,4)} # 7
(ii) QEF gy = Q05 A (resp. Q= QR L) for each (o/z\,j) € Q" (resp. for each (oi,j) €Q);
(iii) eroaj) (resp. Q(QJ)) is A-ordinary for each («,j) € QT (resp. for each (o, j) € Q7);
(iv) the subsets Iy’+ Ulfg’f of n s are disjoint from each other when ¢ runs through all the pairs
n G33);
(v) {(uj(ia), 5), (uj(il),5)} NI~ =0 for each (o, j) € QT LUQ™ and each pair ¢ in (5.3.3);
(vi) if there does not exist (o, j) € A such that both QF and Q~ are pseudo A-decompositions
of (a, j), then for each pair of elements (8, j), (,j) € QT UQ™ satisfying ((ig,7}),7) € A,
there exists a pseudo A-decomposition € of some («, j) € A such that (igr,7) € Ig (i3, ) €
I.and QC QT LQ™;
Q _ )
(vii) ((¢,7"),4) ¢ A for each pair (i,7), (i, j) € Ig+ - U Iy - that do not lie in the same
A-interval of QF;
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(viii) for each pair ¢ in (5.3.3)) and each element (i, j,) € Ig+ - UIHy - which does not lie in
a AH-interval containing ), there does not exist 1 < s < dy and 1 < e < ey 5 such that
((pr’eal)m]d)) € Aa

(ix) if there does not exist (c,j) € A such that both QT and Q~ are pseudo A-decompositions of
(v, 7), then for each pair of distinct A -intervals €, €’ which are pseudo A-decompositions
of some (a,j),(d/,7") € A respectively, there do not exist (4,7), (i/,7) that satisfy the
following;:

L4 ((iou 7’)7])3 ((7’5 7’2[)7])7 ((io/v/i,)aj,)v ((ilv i;/)a j,) € Aa

e i,7 € [m]¢ for some 1 <m < rg.
We say that QF is a constructible A-lift if it is a constructible A-lift of either type I, type II, or type
III. We write C’)g’}; for the subgroup of O(Ng )™ generated by OE?A and F, gi for all constructible
A-lifts QF.

In the following, for example, we will write Condition I@ for the condition |(i)|in the definition

of constructible A-lifts of type I. For each § € NAP, we recall the group ng\ from Definition

Remark 5.3.4. The definition of constructible A-lifts above is directly motivated by constructions
of invariant functions in § |§| and § In other words, given a constructible A-lift QF, we will
construct in § @ an invariant function fgi whose restriction to Mg o (if defined) is closely related

to Fgﬂi (see § for precise statements). The set of constructible A-lifts of type I, II and III are
clearly disjoint by Condition I II and III-@ Among the list of conditions in Definition %,
there are three families of conditions that stand out. The first family of conditions, notably I(ii)
II and III all require certain A-decompositions to be A-exceptional or A-extremal (or even
maximal). The second family of conditions, notably (i)} I{(iv)} II{(iii)| to II{(v)] II{iii)] to III{(v)]
and III{(ix)| all require that certain (wy,1)-orbits inside ns to be disjoint. The third family of
conditions, notably I{(v)| to I{(vii)} IH{(vi)| to IT{(viii)} III{(vi)| and III{(viii)| all require that certain

elements ((4,4), j) do not lie in A. The first and third family of conditions are related to controlling

relative position of the zero and pole divisor of fgi (as a rational function on FL 7) with respect
to Ne a, while the second family ensures that the restriction fgQi |ne.s (if defined) is closely related

to Fgﬂi. The rest of conditions, namely II to II4(xi), will be used to reduce the number of
necessary cases to be discussed in §

The rest of this section is devoted to proving Theorem [5.3.20, which says that the set of con-
structible A-lifts is sufficient to generate all A-lifts. We start with three simple lemmas which will
be frequently used in the rest of the section. R

Recall that for a given A-decomposition 2 of («, j) € AﬂSuppg’ 7+ we construct {2, ¢ in for

each 1 < s <dy and 1 < e < ey 5, where ¢ gef (©,A). (See also Lemma |5.2.11| for its properties.)
Hence, if v is a pair in (5.3.3]), then we write Q5. for the corresponding A-decomposition of
(o, Jy), and we further define

+ def Qd},s,e if Qw - QJr; — def Qw if Q¢ - QJr;
Dise = { 0, itoyco W= 0, o, co
It is clear that Q;Z’s,e, 9;7576 € D(ay.j,)
Lemma 5.3.5. Let QF be a A-lift, and let 1,1 be two distinct pairs in (m such that there
exists 1 < m < r¢ satisfying

A and so Qi < forms a balanced pair.

.s,e .s'e!

Gy sty € [mle
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for some 1 < s <dy and1 < e < ey, and for some 1 < s’ < dy and 1 < e < eyr.s'- Then we have

+
Fﬂi . FQis e, ‘Fvgwl,s’7 / O<|Q |
£ 3 ’
Q / ! ol
Moreover, we have F e g Oy | i (resp. Fg e e O<|Q I) if Qy, (resp. Qyr) is not A-exceptional

or Yy < \Qi\ (resp. Yy < |Qi|)
Proof. We set

def
(5.3.6) {Qf:(m\%)u%se%
e — def —
Q= (€ \Qw) UQq/;se
o +
Then QF is clearly a balanced pair of sets satisfying |Qf| = |Q*| and FgQi Fy e Fézl . Note

that we have either €, C Qi" or Qyr € Q. We also set

def
{SH'_(Q+\QW)uQWSa,

Q; €07\ Q) Uy g

Then QF is also a balanced pair such that |QF] = [QF| = |Q*] and

j:
QitF Y/, /EINFQg:

OE Qi,s,e Qi/ﬁ/’/
(5.3.7) F&F, " F, ~ F, :

Now we observe that both (if/;e, Jy) and (ifb/;e , ) are interior points of Q5 L2, by Lemmal5.2.11}

which implies that QQi is not a A-lift, as a A-lift can not have two distinct interior points in the same

[m]¢ for some 1 < m < r¢. Hence, we deduce from Lemmal5.1.2|that F, &l € (9<|Q | , which together

Q Q /AN
with (5.3.7]) implies F§QiF5 w""’ng whehe E (’)<‘Q | Finally, the last part is a direct consequence of
Lemma [5.2.11] together with Lemma T he proof is thus finished. O

Lemma 5.3.8. Let QF be a A-lift, and let 1,4 be two distinct pairs in such that
(5.3.9) {(ij, (iawl)’jd/)? (uj¢/ (Z'Iaw/),jd)/)} m](ujw (iff)vjw)v (ujz/; (ifje)ajw)]w #0
for some 1 <5 <dy and 1 < e <eys. Then we have

o*
ng.FEwge EO<‘Q |

of
Moreover, we have Fy e g (’)<|Q | if Qy is not A-exceptional or 7y < ]Qi]

Proof. The proof is very Slmllar to that of Lemma [5.3.5 - We set Qi as in . Then we have

|QF| = |Q%] and FQiF e ~ F : Slnce Qp C Qf UQT and ( ,31/,) is an interior pomt of
QfuQr, Ql is not a A lift due to , so that we conclude the result by Lemma The
last part is a direct consequence of Lemma 5.2.11| together with Lemma [5.1.10 U
Lemma 5.3.10. Let QF be a A-lift, and let ¢ be a pair in . Assume that there exists an
element (i', jy) € I+ 0- UTG, - such that

o (7, jy) does not lie in the AP-interval of QF containing Qy;

o there exist 1 < s < dy and 1 < e < ey s satisfying either i’,izj’e € [m]g for some 1 <m < r¢

or ((i5°,1'), jy) € A.
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Then there exists a balanced pair of sets Qi s.e Such that
0f s _ n<|OF]
Fe - F; €0y -
Bose ¢ o<l £ 4 . "
Moreover, F """ € OfA if 1y is not A-exceptional or vy < |Q7F.

Proof. The proof is Veryisimilar to that of Lemma We set QF as in (5.3.6). Then we have
Q +
|QF| = |9F] and ng Fy e~ ngl . If QF is not a A-lift, then we deduce from Lemma [5.1.2| that

+ +
FEQl € (’)?[‘\Q |, Assume now that Qf is a A-lift. Note that we have 7/ # ifxw, as (7, jy) does not lie

in a AZ-interval of QF containing Qy, so that if ¢/, i}, € [m]¢ for some 1 <m < r¢ then QF is not

~ + +
a A-lift any more. If ((i%, '), jy) € A, then ngl € Og\g ' by Lemmals.1.8] as (@', jp), (22, jy) do
not lie in the same A -interval of Qli Finally, by Lemma |5.2.11| together with Lemma [5.1.10|it is

ot +
clear that F ¢ v O; E\Q if 1y, is not A-exceptional. The proof is thus finished. O

,€

The following is a road map which summarizes the logic of the proof of Theorem [5.3.20f The
source of each red arrow is used as an ingredient in the proof of the target. Taking Proposition[5.3.18

for example, the terms type I and < |- | in blue mean that all the balanced pairs Q¥ treated in
Proposition |5.3.18| can be generated from balanced pairs Q(j)[ satisfying one of the following
Q0| < |9%];
[ J 0 N

° QgE is a constructible A-lift of type I;
° Qg[ can be generated from the balanced pairs treated in the lemmas or propositions that

have red arrows towards Proposition [5.3.18]

type 11

L 5.3.14
emma <]

Lemma 5.3.11 { Lemma 5.3.12 { Proposition 5.3416{

type 1
Lemma 5.3.15 ¢ type II

&.
Proposition 5‘3.17{ type I

<[]
~Sa

Proposition 5.3.13 Proposition 5.3.18 { type I

i <[
&, Theorem 5.3.19 { typei I

Theorem 5.3.20 {

Lemma 5.3.11. Let (o, ) be an element ofK N Suppgj, and let QF be a balanced pair such that
07 €Dy
max .
Q™ is a pseudo A-decomposition of (o, j);
((iQ*,hi/a)vj) e~ NQ™ and u]'(iQil) < Uj(’l-QJr,l);

A 18 A-exceptional and A-ordinary;



MODULI OF FONTAINE-LAFFAILLE MODULES AND MOD-p LOCAL-GLOBAL COMPATIBILITY 67

o O\ {((ig-1,1,),4)} is a pseudo A-decomposition of some ((ia,i),J) € A with uj(iy) >
uj(ig+ 1)
Then one of the following holds
. FSQi € (’)EX;
e there exists a pseudo A-decomposition Q' of («, j) such that
— the balanced pair QF, Y is a constructible A-lift of type I1;

+
- FsQO € O;X for the balanced pair Qg defined by QF O and Qy “r0-.
In particular, we have FQ € OCOH O;X

Proof. We write ¢ = (Q*,A) for short. Upon replacing Q) With (Qm (o 5), At (cf. (5.2.19)), we

may assume that €, . = QE5) i A-ordinary for each (« ,]) e\ {(Ca-1,14),9)}-
If there exist 1 < e; < ey,,1 and 4y € n such that
° ih,ifp’fl € [mye for some 1 < my < re;
o cither iy = iy or ((ia,iy),7), ((i,%4),7) € A,
we choose e1 to be minimal possible, and then set Q;’ L' O+ and Q def QL {((zfpfl, i’)),7)} where
Qyp & (e, 3 3 a)t- Note that €y satisfies the condition that Q4 (0 j) = Q@) is A-ordinary

((tasiy),g),A T
for each (o, j) € Q4. We consider the balanced pair Qf defined by Qf = Q" and Q7 € Q. If

+
iy = iy, then QF is not a A-lift and thus FQl € (’)<7 by Lemma [5.1.2L If ((iy,44),7) € A, then we
+

def

+
deduce ngl € O?X from Lemma [5.1.8| Hence we always have F of € (’)<X and FQi = F FQ

Consequently, by taking €/ o Qh_’ it suffices to check the conditions in the deﬁmtlon of constructible

A-lifts of type IT for the balanced pair th If Qi is not a A-lift, then F € (’)<7 thanks to
Lemma |5 It Qi is a A-lift, then Conditions H . I1(ii) H (i), and H (ix)| are true by our
assumptlon on Qh Conditions II. and I14(xi)| hold for € as u] Zh ) > u;(iy) > uj(iq+ ) and

u;j (111/}’81) < wj(ig+ ). If Qi falls Condition II{(vi), then we deduce F % € (’)?7\ from Lemma|5.1.8

If Q fails either Condltlon I1 or Condition Hl there exist 1 < el <e;—1and Zh € n such
that

o z’n,szfl € [mi]¢ for some 1 < my < rg;

o ((iasiy)d). ((i,35),J) € &,

which clearly contradicts the minimality of the choice of ;. Condition II holds as we have

UJ( s )< u]( Ly h) < wj(iar 1) < ujiy) < uj(ip) < u;li, )

for each 1 < e < ey, 1, (o ,j) € Qh\{(( i), ) and 0 < ¢ < #y (o j)- I Qi fails Condition II-

1"1

(viii)j then we deduce F € (’)?X from Lemma [5.3.10| (using the fact v, < « for each ¢ €
{(Q_a’,j)’ A) | (o, ) € Q- }) If Qi satisfies all the conditions from Condition III to Condition II-

then it is clearly a constructlble A-lift of type II.
If e; does not exist but there exist 1 < €} < €y,,1 and 7, € n such that

I
. zb,zw’fl € [my]¢ for some 1 < my, < r;
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® ((ZQ— bib) ])a ((iba .a)’j) € K;
o uiliys) > ujlin- 1),

we choose 31 to be minimal possible, and then set Q+ 'O+ and

Q’%%huﬂmuﬂ(nl')ﬁ}

Z1/11 e
where €y oo Q" \{((ig-1,7),7)} and U (QI(T(la;i L)) A At Note that €, ; satisfies the condition
that Q¢ (o j) = Q?O‘f}"j) A 18 A-ordinary for each (o, j) € vah' We consider the balanced pair Q5

£ ot +
defined by QF def Q and Qy e Q~, then we clearly have F£Qi = FéQb FéQZ and FgQl € O;X (as
Q € Q7 N€Q 7). Consequently, by taking Q< 2, it suffices to check the conditions in the definition

+
of constructible A- hfts of type II for the balanced pair Qi If Qi is not a A-lift, then F, " (’)<7
thanks to Lemma If Q;E is a A-lift, then Condltlons IH( . Hn II 111 and II are true
by our assumptlon on Q Conditions II. and II4{(xi)| hold for Qb as u;(ig) > u] (ig+ 1) and

Uj(/LQ—71) < uJ( 111} V) < ujligrq). If Qi fails Condition II4(vi)| then we deduce Fy o € O?X from

Lemma |5 If Qb fails either Condition H or Condition Hl there exist 1 < 61 < 61 —1
and if € n such that

1eb’l
/At |
® Uty

o ((in- 1;@';) ) ((#,3),5) € K;,
o ui(5T) > w5 (as (@705, 5) € R),

which clearly contradicts the minimality of the choice of eg. Condition II holds for Q;t as we
have

€ [m]]¢ for some 1 < m] < re;

1,1 .
uj(z%) < uj(zi/ll) < uj(ZQ+’ ) < U (Zﬁ) = i (ZQb_(a )¢

and

wy(i50) > w5 > uplio 1) = uilin- )

b (all J)z

for each 1 < e < el — 1, (a ,])EQﬁ,O<C<#QﬁaJ (”,j)EQMandOSch#QM,(auJ). If

Q;t fails Condition II{(viii)| then we deduce F, i € (’)?7\ from Lemma [5.3.10| (using the fact v, <
for each ¢ € {(Q_a’,j)’A) | (o/,7) € Qb . If Qi satisfies all the conditions from Condition HI )| to
Condition II{(viii)| then it is clearly a Constructlble A-lift of type II.

If neither e; nor e} exists, we check the conditions in the definition of constructible A-lifts of
type II for the balanced pair QF. If QF is not a A-lift, then F, oF ¢ (’);X thanks to Lemma
If QF is a A-lift, then Condltlons II-., II Hm and IT{(ix)| are true by our assumption on
Q*. Conditions I1{(x)| and II{(xi)| hold for OF as wu;(iy) > u;(ig+,) and w;(iq- 1) < u;(ig+ ). If
QF fails Condltlon then we deduce Fg € O?X from Lemma |5.1.8, Conditions II and
II hold for Q* thanks to the non-existence of e; and e}. Condition TT(vii) holds for QF as we
have

1 1,1 .
(zwf) < (i, ) <ujlior) <u;(iy) < u](zgf

(a’4)¢
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for each 1 < e < ey, 1, (¢/,]) € Qﬁ and 0 < ¢ < #Q(a, i) If OF fails Condition I1{(viii), then we
deduce ng € O?X from Lemma |5.3.10| (using the fact v, < v for each ¢ € {(Q(;/ij) | (o,7) €

ﬁ’}) Finally, if QF satisfies all the conditions from Condition II{(i)[to Condition IT then it
is clearly a constructible A-lift of type II. The proof is thus finished. O

Lemma 5.3.12. Let (o, j) be an element ofK N Suppzj, and let QF be a balanced pair such that
e Ot ¢ D(q,j),a 18 A-exceptional and A-ordinary;
_l’_
. QEI;??),A is not 1'\—0rdma7’y and Q~ (Q?&f}‘) At
® uj(in-1) > ujio+ 1)
Then one of the following holds
o+ <7.
° FS € Og,m
e there exists a pseudo A-decomposition Q' of («,j) such that
— the balanced pair QF, QY is a constructible A-lift of type I1;

+
- FsQO € O;X for the balanced pair Q§ defined by QF Y and Qy “r0-.
In particular, we have F5Q Ocon O;X

Proof. We write ¢1 = (QF,A) for short. As Q) 4 1s not A-ordinary and Q7 = (57 1)t

there exist a pseudo A-decomposition Q4 of some ((iq, ), j) € A and A- decomposition 2, of some
((iy,1,),7) € A such that

o u;(iy) > u;(iy);

o ()7 = Qﬂ L Qb;
° Q(_a’,j) = Q?Zf,f‘j)’/\ is A-ordinary for each (o/,7) € Q7;

o u;(ip) > uj(in,1) = u;(io-1) > u;(io+ 1)-
If there exist 1 < e; < ey,,1 and 4y € n such that

° ih,ifp’fl € [mye for some 1 < my < re;

e exactly one of the following holds
— Oy =g R
= ((las i), ), ((ig,ig), 7) € A
- ((vazﬂ) ) € A

o u;(iy) > ujio+ 1),

then we choose e; to be minimal possible and set Q+ of Q+ If iy = iy, we set Qh_ def QU

er o N er def
(30D 1€ ()., (.)€ Ko we st 0 2 040 {(G57,1,). 7)) where 9, %
(Q((Za Zh),])A)T If ((4p,1y),7) € A, we set Q = Qﬁquhu{((zipfl, i’,),7)} where an (Q((Z’;h)d) At
Note that 4 satisfies the condition that Q4 (0 ;) = Q( A 18 A-ordinary for each (o, j) € Qﬁ by

and similarly for €, ;. It is not difficult to see that the balanced pair Q defined by Q+ o Q_

and Q ' O~ satisfies F5 ’ € (9;7\ and ng = F5 F€ : in all three cases above. Consequently,
by taking Q' o Qh_ , it suffices to check the conditions in the definition of constructible A-lifts of

Qi
type 1I for the balanced pair QEE If QEE is not a A-lift, then F§ s O?X thanks to Lemma |5.1.2
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If QEE is a A-lift, then Conditions II4( Hﬂ, 1I iii and II are true by our assumption on

th Conditions H and II<|(X1) hold for Qh as uj(lh) > wuj(ig+ 1) and u;(i 111}61) < uj(igt 1)

If Qb fails Condition I1{(vi)} then we deduce F € (’)5< 1 from Lemma [5.1.8] If Q fails either
Condition II or Condition Hl (v)} there ex1st 1<ej <e;—1andi; €nsuch that

o zu,zw’ll € [m{]¢ for some 1 < mj < rg;

e one of the following holds
— iy =iy
= (Gas @), ), (@, 2),5) € A
— (i, ), 5) € A;

o u;(iy) > uj(iq ),

which clearly contradicts the minimality of the choice of e;. Condition II holds as we have
uy( Ly ) <y (%p ) <wjliar ) <u;(iy) < uj(iQm(a/,j)aC)

foreach 1 <e < ey, 1, (¢/,7) € Qh\{((zllplel, in);J)} and 0 < ¢ < H#Qy (o 5. If Qgﬁ fails Condition II-

of
(viii), then we deduce ng € (’);X from Lemma [5.3.10| (using the fact v, < v for each ¢ €
{(Q., i) A | (o, 5)eQ)). If Qi satisfies all the conditions from Condition HI to Condition II-

then it is clearly a constructlble A-lift of type II.
If such e; does not exist (for example if ey, 1 = 0), we check the conditions in the deﬁnition of

constructible A-lifts of type II for the balanced pair Q. If QF is not a A-lift, then F, (’)<7

thanks to Lemma If OF is a A- lift, then Condltlons H-., H Hm and H«é are true

by our assumptlon on Qi Conditions II. (x)| and II hold for Q* as u;(iy) > u] (iy) > uj(iq+ 1),
((iy, i), 5) € Q@ and uj(i-1) = uj(i, 1) > u;(ig+ ). If QF fails Condition II )} then we deduce
FQi € (’)<7 from Lemma Conditions Hﬂ and H. hold for QF due to the non-existence
of e1. Condltlon H holds as we have

uj(zw ) < u](zw ) < uj(igr ) < uj(iy) < uj(io-

(a’,3)"°
for each 1 < e < ey, 1, (¢/,]) € (Alﬁ and 0 < ¢ < #Q(_a/ i) If QF fails Condition II{(viii), then we
deduce FgQi € C’);X from Lemma |5.3.10| (using the fact v, < v for each ¢ € {(Q(_a,j),A) | (o,7) €

ﬁ_}) Finally, if QF satisfies all the conditions from Condition IT{(i)| to Condition II then it
is clearly a constructible A-lift of type II. The proof is thus finished. O

Proposition 5.3.13. Let (a, j) be an element ofJA\ N Suppgj and QF be a balanced pair such that

e 0T € D(q,j),a 18 A-exceptional and A-ordinary;
o QY \ is not A-ordinary and €~ (Ql(’;a;‘) N
Then one of the following holds
o+ <7.
* F¢" €0y,
e there exists a pseudo A-decomposition Q' of («,j) such that
— the balanced pair QF, QY is a constructible A-lift of type I1;

+
- F€Q° € O?X for the balanced pair Qg defined by Qar O and Qy -

In particular, we have FgQ (’)COH O;X
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Proof. It is harmless to assume that wu;(ig+ 1) < u; (Z'Q?&a);) 1) (and thus QF # Qe 1), otherwise
neither the balanced pair QF, Q’Eﬁa}‘) A nor the balanced pair 27, Q’Eﬁa}‘) A is a A-lift, which implies
ngi € (’)?7\ by Lemma

It follows from the definition of = = (Qaa;‘) i (cf. (5.2.19)) that exactly one of the following
holds:

o uj(ig-1) > uj(ior1);
hd iﬂ—,l = iQ+,1;
® uj(iq-1) <wuj(ig+ 1) and ((ig- 1,4).j) € Q7 NQ™.

If wj(iq- 1) > w;(ig+ 1), we conclude by applying Lemma [5.3.12| to the balanced pair Ot If
ig-1 = ig+ 1, then the balanced pair OF is not a A-lift, which implies ng € O;X by Lemma
If u;(ig- 1) < uj(ig+ 1) and ((ig- 1,1,),7) € Q7 NQ~, then we conclude by applying Lemma [5.3.11
to the balanced pair QF. The proof is thus finished. O

Lemma 5.3.14. Let («,j) be an element ofK N Suppgj and Q0 € D(q 4y a- Assume that Q is not

A-ordinary. Then there exists a pseudo A-decomposition Q' of («, j) such that

o Y is A-equivalent to Q2 with level < ~;
o (Y 7& {(a, )} ajnd Q’(Q,J) = Qo)A B8 A-ordinary for each (o, 5) €
o u;(ior) = ujlina)-
Proof. We argue by induction on the block 7. As € is not A-ordinary, we consider 1 < ¢; < #0—1,

1 < s <dy (withy =(2,A)) and 1 < ey dof ey.s; as defined at (5.2.19) (with sy maximal possible

and ey minimal possible for the fixed s{). We set 3 o (i92.e;»1n) and

def x
D = Q554 €Dy

Note that we must have uj(igznax 1) > ui(in, 1) > u;(in1). We write 3 < v for the image of

)N
(B,7) under A — A5,

Note that €2; is either A-exceptional or A-extremal. If ©; is A-ordinary, we set Q) def Q. If O
is not A-ordinary, we may apply our inductive assumption to 25 (as 73 < 7) and obtain a pseudo
A decomposition Q] of (3, j) that satisfies

e ) is A-equivalent to ©; with level < 71;
o O #{(8,)} and Q, ;= QEY)  is A-ordinary for each (o, j) €
o uj(i 1) > u;(in; 1)
Then we define
QO d:ef Qmax
( ((iavinl T)v])vA

We can clearly deduce from wu;(in,1) > wu;(ion), ‘a1 = ig 1 and u;(ior 1) > u;(io,1) that

)i U

wj(ir1) > wj(in1), which implies that Q' satisfies the desired conditions. In all, the proof is
finished by an induction on 7. O

Lemma 5.3.15. Let (o, ) be an element ofK N Suppgj, and let QF be a balanced pair such that

e )™ = Q](%B?)J\ is A-exceptional and A-ordinary with ey, 1 > 1, where 1 = (27, A);
ot

e O ¢ Do j)a and ig+ = izlp’Q for some 1 < et < ey, 1.
Then one of the following holds
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o+ <7.
o Fet € O&A, 1
o there exists Q' € D, jy.a which is A-equivalent to QF with level < v such that i1 = iw’;

and the balanced pair Q', Q™ is a constructible A-lift of type 1;
e there exists a pseudo A-decomposition Q' of («,j) which is A-equivalent to QT with level

< 7y such that iqy 1 = z}z); and the balanced pair Q~, ) is a constructible A-lift of type 11.
In particular, we always have ng € O - OZX
Proof. Note that ey, 1 > 1 is the same as saying #D(,,;),A > 2 in this case. Replacing QT with
Vimier 1yoa UGt 1, in)s3)}
if necessary, it is harmless to assume from now on that Q?(lfxim A S QF. If we consider a
s , 1/ 7
balanced pair Qf)t with both Qf and € being A-decomposition of («, j) satisfying iQO+ 1= 111/)21 and

+ ~
=1 = z‘i}’?, then we deduce FgQO € (’);X from Lemma |5.1.8 and the fact ((i;’;,i;’f),j) € A

Consequently, we may assume in the rest of the proof that e™ = 1.
If QT is neither A-exceptional nor A-extremal, then it follows from Lemma [5.2.12| that there
exists (2 € D, j),a such that

a7j)
e ), is A-equivalent to Q1 with level < 7;
e O < QO

e (), is either A-exceptional or A-extremal.

(a’j)7A,
1. Hence Q7 is A-equivalent to Q, (and thus QT as well) with level < ~,

; _ ;L1 - — X X + +
It follows from i+ ; = Ty > Q- =Qra Q?(l?a,im,l),j),/\ C Q7 and Q7 < €, that we must have
0,1 = lg-1 = ii?l‘"f?),z\’
which implies F, 59 € O;X

We may assume that Q7 is either A-exceptional or A-extremal in the rest of the proof.

If QF is A-ordinary, then we check the conditions in the definition of constructible A-lifts of
type I for the balanced pair QF. We write 1y = (QF,A) for short. If Q% is not a A-lift, then
ng € (’)ZX thanks to Lemma If OF is a A-lift, then Conditions I I{(ii), and I(iii)
are true by our assumption on Q*. We can also deduce Conditions I-|§iv) and I-|!Vii! from the
fact u](zilpj) < u](zilb’;) = uj(ig+ 1) < uj(ig-q) for each 1 < e < ey, 1. If QF is A-exceptional,
Condition I holds for QF as we have

1, ) ) )
wj(igy) < ujlior ) < uj(io- 1) < uj(io- )

foreach1 <e<ey 1and 1 <c<H#O0 —1. If Q7T is not A-exceptional (and thus A-extremal by

previous assumption) and fails Condition I- 1 then we deduce F; gi € (’)?X from Lemma|5.3.10, If

QF fails Condition I then Fg’i € (’)?X thanks to Lemma If QF satisfies all the conditions
from I-@to I then it is a constructible A-lift of type I.

If O is not A-ordinary, we apply Lemma [5.3.14 to Q" and define Q] as the pseudo A-
decomposition of («,j) associated with QF as in Lemma 5.3.14l In particular, 2] satisfies the
following conditions

e Q) is A-equivalent to QT with level < ;
o O #{(a,j)} and O (o) = Qo) a 18 A-ordinary for each (o/,5) € Q;

(o5
® uj(igljl) 2 uj(iQJr,l)'
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If u; (iﬂfal) > uj(ig+ 1), then we must have ig-1 = io-1; and thus the balanced pair €7, Q™ is not
a A-lift, which implies FEQi c (’);X Hence, we may assume from now on that iQI- =g+ = 1111)21
and check the conditions in the definition of constructible A- hfts of type II for the balanced pair
Q defined by Q7 L0~ and Qp. If Qli is not a A-lift, then Fg 3 € O?v thanks to Lemma |5.1.2
If Q{E is a A-lift, then Conditions Hl ITH(ii), TI{(iii) H—l?'7 Hl and II{(xi)| are true by our
assumption on QF. If QF fails Condition II{(vi), then we deduce F : € (’)§< 1 from Lemma [5.1.8
Conditions Hm II. (v)| and Hm (vii)| hold for Qi as we have

“J( Uijo 0) < (i 2&1) = uj(ig+ ) = U’j(ZQ;J) <w(ig-1) = Uj(igzjg)
for each 1 < e < ey, 1 (modulo difference on notation between Definition [5.3.1] and this proof).
If QF fails Condition II{(viii), then we deduce F§Q P € (’);X from Lemma [5.3.10| (using the fact
vy < 7y for each ¢ € {(Q;(Q,J), A) | (,5) € ﬁf}) Finally, if QF satisfies all the conditions from
Condition H@ to Condition H then it is clearly a constructible A-lift of type II. The proof
is thus finished. O
Proposition 5.3.16. Let («,j) be an element ofK N Suppg’j and QF be a balanced pair such that

both Qt and Q~ are pseudo A-decompositions of (a, j) satisfying Ot + {(a,J)} # Q~. Then one
of the following holds

. ng € OgA;
e there exists a constructible A-lift Qoi of type 111 such that
- both QO and €, are pseudo A-decompositions of (., j);

- F.0 (FQi) Le 03}

In particular, we have ng € O&N O;X

Proof. First of all, as O # {(a, ])} -+ Q, we observe that QT (resp. Q™) is clearly A-equivalent to
Qf & LI (5% At (resp. Qf o L] (P 1)+) with level < v (using Lemma |5.2.20)).

; (of,5),A : (o’ 4),A) T
(o, g)eQrt (o, )eQrt
Hence 0ol ) = Q75 A (resp. Q(I(o/, N = = Q57 ) is A-ordinary for each (o, j) € QF (resp. for

each (o, j )EQO).
We check the deﬁnition of constructible A-lifts of type III for the balanced pair Qi. If QSE is
not a A- hft then F5 0 (’)5<7 thanks to Lemma |5.1.2| If Qf)t is a A-lift, then Conditions III-

. (i)} 111 ITI4(iii)| ITI4(vi)| and I1I{(ix)| clearly hold. If Q fails Condition III then we deduce
Q

v e (’) A by Lemma |5.3.5 as v, < and vy < 'y in this case. If Qi fails Condition III for

some ChOlce of 1,7’ in ([5.3.3]), then we deduce F€ o € O£< A by Lemma [5.3.8] Similarly, if Qoi fails
+

Condition III— (viii), we deduce F % e O?X from Lemma [5.3.100 If QF fails Condition IIT{(vii), we

deduce F & € (’)?X from Lemma|5.1.8,

Flnally, if QO satisfies all the conditions from Condition HI to Condition III—E (ix), then it is
clearly a constructible A-lift of type III. The proof is thus ﬁmshed O

Proposition 5.3.17. Let («,j) be an element ofK N Suppgj and QF be a balanced pair such that
e 7 is a pseudo A-decomposition of («, j) satisfying Q- #{(a,5)};
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o OF € D, ) is A-ordinary
o cither QO = QIS A o QT is A-extremal.
Then there exists a pseudo A-decomposition Q' of («,j) with O £ {(a,j)} such that the balanced
pair Qoi defined by Qar ot and Qy Lol satisfies one of the following
2% <.
o F; 0 e Og,A’
° Q(jf is a constructible A-lift of type 11;

o there exists V' € D, ;) o such that
— the balanced pair Q", Q" satisfies the conditions in Lemma |5.3.15];

+
- F£Ql € (’);X for the balanced pair defined by Qf YO and Q7 el Q-

In particular, we have FEQ € Ocon (’);X

Proof. Let (8,7), (8,7) € O~ be the clements satisfying ip =1iq and i, ig € [m]¢ for some 1 < m <
re. We define two integers iy, 4, by u;(iy) = max{u;(iy), u;j(ig)}, w;(i,) = min{u;(iy), u;(ip)},
and then set

Q/ def( max

((iaie) ) AT D (i) )01
Note that u;(ij) > u;(igr) > u;(iq- 1) for the elements (3,j), (8”,7) € ' characterized by ig =
io and ig, = i,. We also note that €, ., = Q7% \ is A-ordinary for each (o, j) € Q' (cf.

Lemma [5.2.20)).

Now we check the conditions in the definition of constructible A-lifts of typeiH for the balanced
pair OF defined by Qf = QF and Q; = . If QF is not a Alift, then F, P ¢ OF} thanks to

Lemma [5.1.2 “ It Qoi is a A-lift, then Conditions II—. ()} TI4(i1)} TT(iii) H—| (ix) L Hl and II are
true by our assumption on QF. If QF fails Condition II{(vi)} then we deduce F % € C’)£< 1 from

OF
Lemma |5.1.8] If QF fails Condition IT{(viii), then we deduce FS s O;X from Lemma|5.3.10| (using
the fact vy, < 7 for each ¢ € {(Q(_O/ i) A) | (,5) € f\l*}) If Qf is not A-exceptional and QF fails

+
Condition II{(iv)| (resp. Condition II resp. Condition II{(vii)), then we deduce FEQ 0 < C’)Z A by

Lemma [5.3.5| (resp. by Lemma resp. by Lemma [5.3.10)).
We now treat Condition IT Condition H and Condition II when Qa' is A-exceptional
and in particular QO = Q?lax by our assumption.

If Qi fails Condition II and Qar = Q?‘a") A 18 A-exceptional, then there exists 1 < e < ey, 1,
(/,5) € (AZ and 1 < m < r¢ such that i, 11#6 € [m]g We set 0/ < le,l,e € Dy j),a With
igr1 = z (cf the paragraph before Lemma and note that the balanced pair €, Q+
satisfies the conditions of Lemma [5.3.15 We set Qf d—ef Q" and Ql_ = QO , and then observe that

i

the balanced pair Qf is not a A-lift, so that we deduce F e (’)5< 1 by Lemma [5.1.2

If Qoi fails Condition II and Qg = Q’(nax) A I8 A- exceptlonal then there exists 1 < e < e% 1
(o, 5) € Qa and 1 < ¢ < #Q(I(a’, h— 1 such that ZQS(Q e # i/, and Z’l/)f satisfies either zwl =

G- or ((zllﬂf, i) ),J) € A. We define Q" and QFf the same way as in the last paragraph

0,(a’,j)¢ 0,(a’,j)¢
and note that the balanced pair 9", Qg satisfies the conditions of Lemma [5.3.150 If il’le =
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+ ~
then QF is not a A-lift so that we have Fgl € O?X by Lemma|5.1.2} and if ((il’f, i) Jj) €A

)
¥ 0,(a’,5)¢

+
then we have FgQl € (’);X by Lemma |5.1.8| as iQO_(a/ e £l

If QF fails Condition II{(iv)| and Qf = Q) 4 1s A-exceptional, then there exists (/,j) € Qa

(with ¢ = (Qg(a,j),A)), 1 <s<dy,1<e<ey1,1<e <epsandl <m < resuch that
.s,e/ e

By o by, € [m]e. We define Q" and Qfﬁ the same way as before and note that the balanced pair
+
Q. Qg satisfies the conditions of Lemma|5.3.15. Then we deduce FgQl € (’);X by Lemma [5.3.10

Finally, if QF satisfies all the conditions from Condition H to Condition II{(viii)j then it is
clearly a constructible A-lift of type II. The proof is thus finished. O

Proposition 5.3.18. Let («,j) be an element ofK N Suppgj and QF be a balanced pair such that

e 0T ¢ D(q,j),a 18 A-exceptional and A-ordinary;
e ()7 = Q@a}‘) A 8 A-ordinary.

Then one of the following holds
F& € 0335
OF is a constructible A-lift of type 1;
there exists a pseudo A-decomposition ' of (o, j) such that
— the balanced pair O, Q' satisfies the conditions of Lemmal[5.3.11]
— the balanced pair Q, €Y satisfies the conditions of Proposition '
there exists ' € D4 jy A such that
— the balanced pair ', Q™ satisfies the conditions of Lemma '

+
- F€Q° € O?X for the balanced pair Qg defined by QF O and Qy Kol

con

: Q* <y
In particular, we have F¢™ € Ogy - Og,A'
Proof. We write 1h; & (T, A) and 19 & (27, A) for short. It is harmless to assume that u;(ig+ 1) <
u;(ig-1) = uj(iﬂaa’;) 1), since the result is clear otherwise.

We check the definition of constructible A-lifts of type I for the balanced pair QF. If Q% is not a
A-lift, then F2* € OF] thanks to Lemma If OF is a A-lift, then Conditions 1 1 and
I are true by our assumption on Q.

If QF fails Condition I then there exist 1 <s < dy,, 1 < ez < ey, s, and 1 < e < ey, 1 such
that

o z'llﬂ’fl, iy’ € [m]g for some 11§ m < rg;
o w;(iy?) > ujligr 1) > uj(iy™).
We set 0 & (QI(IE?XiS’EZ)j)A)T U {((211;1,2;),])} Then we note that the balanced pair QF,
[e3) w2 9. b
satisfies the conditions in Lemma [5.3.11, and the balanced pair 2, satisfies the conditions in
Lemma
Condition I holds for Q% as we have

1, , . .
uj(iyy) < ujior ) < ujlio-1) < ujio- )

for each 1 < e < ey, 1 and 1 < ¢ < #0° — 1. If OF fails Condition I[(v)} then F* € O thanks
to Lemma If OF fails Condition I(vii)] and if 2~ is not A-exceptional, then we deduce
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ng € (’);X by Lemma [5.3.10, If QF fails Condition I and if Q_Ais A-exceptional, then there
exists 1 < e < ey, 1 such that either qu/}; = i+ Or ((zi}j, i+ .),j) € A for some 1 < ¢ < #07 — 1.
We set Qf = L O+ and Qr aef Qyy1e € D(jya (see the paragraph before Lemma [5.3.5) with

iQS = qu/)e’ and note that the balanced pair Q;, Q™ satisfies the conditions in Lemma [5.3.15] It

ES
remains to check that F ’ € (’)<V Ifi zw = ig+ . then Qf is not a A-lift so that we have F£Ql € O?X

by Lemma [5.1.2) and if ((z¢2,zQ+7C) j) € A then we have F P (9<AY by Lemma [5.1.8

Finally, if QF satisfies all the conditions from I-. (i)| to I4(vii) then it is clearly a constructible
A-lift of type I. The last claim follows from Lemma [5.3.11] Lemma [5.3.15] and Proposition [5.3.17]
The proof is thus finished. O

Theorem 5.3.19. Let («,j) be an element ofK N Suppgj, and QF be a balanced pair. Assume
that both QT and Q= are pseudo A-decompositions of (c,j). Then we have F € O8N - (’);X

Proof. We may start with defining two balanced pairs Qli, Q;E by Q+ & Qt, Qr Lt max

(e4),A°
+ +
Of = & Q?&a;‘) R & Q~, and then observe that Fgﬂi ~ FgQl Fg% . Hence it suffices to prove
FQi € Ocon (’)?X for all balanced pairs QF with a pseudo A-decomposition QF of (a,j) and
Q* Qmax ’
(eng), A .
If OF + {(a,7)} and Q~ = Qp ) is A-ordinary, we deduce FgQ € Oy O;X by applying
Proposition [5.3.17|to the balanced pair Q~, QT (inverse of QF). If QF £ {(a,j)} and Q7 = QE™ 4

is not A-ordinary, we deduce FgQ € (’)C‘m O?X by applying Proposition to the balanced pair
ar, Q; . Hence we assume in the rest of the proof that QT is a A-decomposition of (a, j). According
to Lemma it is harmless to assume that QF is either A-exceptional or A-extremal. If QO
is not A- ordlnary, then we consider the balanced pair Qf ,27 and deduce Fe 2F ¢ Ocon O;X from

previous discussion. If Q7 is A-exceptional and A-ordinary, then we deduce F i € (’)COH (’); i

from Proposition [5.3.13| and Proposition [5.3.18, Hence, it remains to treat the case When QF is

A-extremal and A-ordinary and 2~ = Q‘(na}‘) . We may also assume that QF # Q?&a}‘) A» since the

statement is trivial otherwise. If Q= = Q?lax) A is not A-ordinary, then we may deduce ng €
(’)gol{‘ . O?X by applying Proposition to the balanced pair Q7T QT_ .

Therefore we can assume from now on that Q1 is A-extremal and A-ordinary and Q~ = Q?&a;‘) A
is A-ordinary. In this case, we prove F € (’)“’n (’);X by checking the definition of constructible

A-lifts of type I. If QF is not a A- hft then FQjE € (’)<7 thanks to Lemma If QF is a
A-lift, then Conditions (i)} H(ii)| and I(ii)| are true by our assumption on Q . If QF fails
Condition Il then FQ OEX thanks to Lemma If QF fails Condition I{(vi), then we

deduce F¢ oF O;X from Lemma 5.3.10, as O is not A-exceptional. If QF fails Condition I-
then we deduce F5 € (’)C‘m (’)?7\, by the same argument as at the end of the proof of

Proposition 5.3.18(see the constructlon of Qf there). If QF fails Condition I{(iv)| and Q~ is not
A-exceptional, then we deduce ng € O;X from Lemma If QF fails Condition I and Q~

is A-exceptional, then we may choose {2y € D, ;) a such that iQEJ = lzlp; for some 1 < e < ey, 1

where zllp; €](u; (szfl) 7), (u; (zfpfl) J))w, for some 1 < s < dy, and 1 < ey < ey, 4, s0 that letting
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+
Qd Lo+ it is enough to check that FEQO € Oy O;A by Lemma [5.3.15 But this follows

immediately from Lemma [5.3.10]as Q% is not A- exceptlonal
Finally, if Q% satisfies all the conditions from I-. (i) to I-m (vii), then it is a constructible A-lift of

type I and thus F 0F ¢ Ocon The proof is thus finished. O

Theorem 5.3.20. For each A-lift QF, we have ng € Oy

Proof. As usual, we can associate with QF the sets ﬁ*, O~ and then era i) (resp. Q( )) for each
(a,j) € QF (resp. for each (a,j) € Q7). We argue by induction on the norm |Q¥| (cf. Defini-
tion [5.1.1)). In other words, we only need to prove that

+
(5.3.21) F& e 055 - 04 C O(New)

for each A-lift QF. It follows from the first half of Lemma that it suffices to prove
when QF LI Q™ is A-separated. If QF = Q~, then the result is covered by Theorem Hence
we assume from now on that QF is a A-lift such that O NQ~ = 0 and QO LQ~ is A- separated.

For each (a, j) € QLSO we consider the following pseudo A-decomposition Qaj) g oo (Q?&a;‘) At
of (a, 7). Then we define

e Qa . ‘f , . €§+; . Q+ ) .f , . €ﬁ+;
Q(tw)ud:f S, (o ‘7.) ~ ' and Q(aa)udf () 1 (o ‘2) P
N, (e, g) €8 ’ Qg i (a,7) €Q7.
We also define » y
Q;r = I—I Q(a,j),b and Q. = |_| Q(a,j),h
(aeirt (0u)€0
Then it follows from Theorem [5.3.19] that

F (Oéj)h e Ocon O<\Qi|
for each (a, j) € QF L (AI*, and therefore
Qi
(5.3.22) FE(FE) '~ I F Vot o (’)<‘Qi|,
(e.g)EQ+LQ~

+
Hence it suffices to prove that F, % € (’)COH O; kQ | by checking the definition of constructible A-lifts
of type III. If both Q+ and Q are pseudo A-decompositions of some («,j) € K, then we clearly

of +
have F € Oc‘m (’)<‘Q | by Theorem[5.3.19, and thus we may assume from now on that such («, j)

does not exist. If Qi is not a A-lift, then we clearly have F o € (9<|Q | by Lemma [5.1.2f If Qi
is a A-lift, then Condltlons IIIH III (i), and ITI4(iii) clearly hold. If Qi fails Condltlon I11 (1v)

then we deduce from Lemma |5.3.5, Lemma |5.3.10, and Theorem [5.3.19| that F OCOH ;kgi‘

If Qi fails Condition IIIl then we deduce from Lemma [5.3.8/ and Theorem [5.3.19| that F “ €

Qi
Oy - ;kﬁ i Qi fails Condition III{(vii), then we deduce F = O;kﬂﬂ from Lemma[5.1.8 If

Q:
Qi fails Condition IIl4(viii)j then we deduce from Lemma [5.3.10/and Theorem 5.3.19| that F " e
O ;J&Qﬂ. If QE‘E fails Condition ITI{(ix)|for some Q, ', (a, j), (¢/, 5, (4,7), (', 5") and m there,
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then we choose an arbitrary Q, € D, j)a (vesp. ) € Dy ;) o) which has (i,7) (vesp. (7',5')) as
an interior point and construct a new balanced pair QF by replacing the AP-intervals Q, Q' with

0,, Q) respectively. On the one hand, it is clear that F (FQ )= O - O | l by applying

Theorem m to the pair €2, Q, and the pair ', .. On the other hand, the balanced pair QF is
not a A-lift as (4,7), (¢, 5') € [m] (and €, Q are distinct A7-intervals of Qh ), which implies that

F® € 07 by Lemmalp.1.2, and thus FE e o o8,
Now we assume that Qi fails Condition Hlm for some (8,7), (8',7) € SAT“ L (AZH_ satisfying
((iprsi3),J) € A If (g, ) and (i), j) do not lie in the same A-interval of QEE, then we deduce

Qi
Fg "e O?kﬂﬂ from Lemma [5.1.8. Otherwise there exists a A -interval €y of Qh in which both

(igr,7) and (z’ﬂ, j) lie. According to our construction of QEE, there is a natural bijection between AS-

intervals of QF and A -intervals of QE‘E, and therefore the A-interval Qy of Qak uniquely determines
a AD-interval Q of QF. Let (a,j) € QT LUQ™ (resp. (o, ) € QF LUQ™) with (3,5) € Q(mj),h (resp.
8,4 € ﬁ(a/7]~)7u), and note that we have

((ia’ﬂiﬁ/)vj)a ((iﬁ’ﬂi,a’)aj)? ((iav Zlﬁ)?])? ((Z%,Z;),]) €A ({0} X {]})
If (o, 7) = (¢, ), then due to the construction of QE‘E there is necessarily a pseudo A-decomposition

of ((ig,i}), j) which is a subset of (Ql(na )A i = Qayj)y (using Lemma [5.2.20)), and thus contradicts

our assumption. Hence, we may assume that (a,j) # (o, ) and ((ig,i}),j) € A. As (B,) is an
element of Q(a,j),h (with Q)5 = (Q?S}‘)J}\)T) we have either i = 7, or ((i, i), J) € A. Similarly,
we have either i, =ig or ((in,i5),j) € A. Consequently, we deduce that ((in,1,),]) € A, which
necessarily implies that ((io/,1,,),7) € QruQ~ as QTUOQ s A-separated. (Be careful that Q;I_IQ;
is not A-separated in general, as a pseudo A-decomposition is A-separated if and only if it is a A-
decomposition.) We write €’ for an arbitrary A-decomposition of ((ig,i3),7). We may assume
without loss of generality that (o, ), (o/,7) € Q= and ((ig,4,),5) € Q. If ig = io and iy = i,
then Q_, i1).4)8 € Q; L€, is clearly a pseudo A-decomposition of (i, 15),7) = ((za/ i), 7)
which again contradicts our assumption. Hence, we have either ig # i, or Z’B # i!,. Then QE‘E
has exactly two A -intervals given by Qh_ and Q; (with Q;’ being a pseudo A-decomposition of
((Gigr, i), 7) and QF = {((iw,7,),7)}) and there exist two balanced pairs Qgt and Qbi such that

e O =07, QF = C O and (O \Q)UQ =Q;

° both Qjj and Qﬁ are pseudo A-decompositions of ((ia/,1h),7);

o |97 <19 = IQiI = |Q*].

As we clearly have F o € (’)<|Q " and F o € (’)C‘m O§< J\Qil by Theorem [5.3.19] we deduce that

of oFf _oF +
b £ con | n<I|QF|
Fy F F P e Oy Oy
Finally, if QF satisfies all the conditions from HI-. (i)| to ITT{(ix)}, then it is a constructible A-lift of

type III and thus FY ¢ (’)COH In all, we have shown that F € (’)COH . £< /‘\Q lin all cases, which

together with (5.3.22)) 1mphes 5.3.21). The proof is thus ﬁnlshed by an induction on |Q¥|. O
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6. CONSTRUCTION OF INVARIANT FUNCTIONS

We fix a choice of wy € W, { = (wz,uy) € =y, and a subset A C Supp, ; whose image in
Suppg is AU. In this section, we construct an invariant function f?i € Inv for each constructible A-
lift Q*. The construction when QF is of type I, IT or III is done in § . §- and §ﬂ respectlvely
More precisely, for each constructible A-lift, we will construct an element v% J = (v? Jjeg €W

and a subset If} C ny and prove in Lemma that
O+ O+ O+

The invariant function f?i is simply defined by (cf. 1)

QF def
f Cfﬂilﬂi

The relation between fé and FQ will be further explored in § I

We recall A from the beglnmng of § |5 and write AT for its image in Su We recall the set
ny from and the notation [m]¢ from (3.3.1). We also recall from the right action
of W x Z/f on ny. For each pair of elements (ki,71), (k2,72) € ny lying in the same orbit of
(wg,1)) CW xZ/f, we recall (see § 4.2.2) the definition of |(k1, j1), (k2, j2)lw, € ng.

We fix some notation which will Ee frEquently used throughout the rest of § [6] as well as §[7] We
fix a A-lift QF and attach the sets QF, Q~ and the partitions

+_ + - _ —
O = | oymde = ] 9,

(ong)ert (aj)e—
as in Definition We start with giving the sets QF and O~ a numbering. We write Z/t for

the cyclic group of order ¢ for each ¢ > 2. If #(Aﬁ = #(AT = 1, then we write O = {(a1,71)},

QO = (a2, jo a1, 71) and (ao,j2) might be equal) and then set ¢ def 2, mo def hao, = hea, and
2 1

, & lo, = Lo,. Otherwise, O* is a A-lift of some directed loop I' inside &z that satisfies

E(F)+ NET)” = 0. We set t & #E(I)* + #E(I)~ > 3 and there exists a set_of integers
{mq | a € Z/t} C{1,...,7¢} such that either (mq_1,mq) € E[)" or (mq, ma_1) € E(T')~ for each
a € Z/t. Tt is clear that {m, | a € Z/t} is uniquely determined up to a cyclic permutation on the
index set Z/t. We fix a choice of {m, | a € Z/t} from now on. We write (Z/t)* (resp. (Z/t)™)
for the subset of Z/t characterized by a € (Z/t)" (resp. a € (Z/t)7) if and only if (my_1,m4) €
E@)* (resp. (mq,mq_1) € E(I')7). Hence we have a decomposition Z/t = (Z/t)T U (Z/t)~. We
write (aq, jo) for the unique element of QF (resp. ﬁ_) whose image in SuppfD is (mg—1,mq) (resp.
(mg,mg—1)). Then we set

Q< Qf 0 and g, = (QF, . ),A) for cach a € (Z/t)*;
Q, o and 1, & (Q A) for eacha € (Z/t)".

(aasja) (@asja)’

For each a € Z/t, we set
def def

co = #8y and dy, = dy, .
For each 1 < s <d, and each 1 Segeasdzc 4,5 WE Set

def def s e def .
S S e & S,e 2= . s,e
Co = Ca = Cyys =iy, and kg© =y, (i5°).
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For each 0 < ¢ < ¢, we set

. def . def
la,c = 'lQ¢ ,Ca—C and kac = u]a(za c)

so that we have

(6.0.1) ka,O > ka@ > > ka,ca—l > ka,ca-
and
(6.0.2) Kaes—1 > k5t > o > k> kges

for each 1 < s < d, (satisfying e, s > 1).

6.1. Construction of type I. In this section, we fix a constructible A-lift QF of type I as in

Definition and construct an element U?i = (’U?i) jeg € W as well as a subset If}i Cny.

Following the notation at the beginning of § |§|, we have O = {(a1, 1)} = {(az,j2)} = O,

O™ = Qg = Qinax , and Q1 = Qy is a A-decomposition of (a1, ;) which is either A-exceptional
(a1,51),A

or A-extremal. In particular, we have t = 2, koo = k1o and ko, = kie,. As QT # Q7 and

we clearly have #D( A > 2, we deduce that di,do > 1. It follows from Q— = Qpax that

041’]'1)» (alj )A

k2.co—1 > kic—1, €21 > 1 (namely k;’l is defined) and k‘;’l > ki,c,—1. We set

def
€42 Zmax{e|1<e< ea,q, and kgg’e > kic—1}s

and if such a ey does not exist (i.e. kgz”e < kie -1 foral 1 <e < eyq,) then we set e Ly,

Hence, the following set (which is empty if do = 1 and ez o = 0)

1, 1.1 do—1,e da,e
{k . e21___7kgg 1 k 2d21kd2, ) k2n2}

exhausts all possible k2’ between k1o and ki, —1. Thanks to |i we define

€42 do—1€2s

QF ¢ def dae . da, j . e -
125 N0 ), 6 0y U || |10 00, (65 )y
e=1 s=1 e=1
+
Note that we understand I? * to be () if eg2 = 0.
We are now ready to define vf}i and [ f}i. Our definition of vf}i = (v]Qi )jeg is always of the
form
OF g 0Fp e
LOF def | ﬂvj wj if j = ji;
J W otherwise

Ofh

+ +
with fujﬂl # and fujﬂl o to be defined below. The construction of vj # and v;, 7 can be visualized in

Figure [2]

If QF is A-exceptional (and thus dy = 1 and ¢} = ¢;, as d; > 1), then we have either e1,1 =0
(namely k:i’l is not defined) or e;; > 1 and k;’l > ki1 > k:i’l. If Q7 is A-extremal (and thus
di > 1 and c% < ¢1), then we have e; s > 1 for each 1 < s < d; and k}’l > kLC% > ki,c,—1, and
moreover k:%’l # k%’l thanks to Condition I{(iv)l Consequently, if kzi’l is defined (e1; > 1), we
always have k171 =+ k:l’l. Ifei1 >1and k;’l < k:l’l, we define

QF 4 def 1,1 lein di,1 di,e1,4y
U]l (k2czak202 1,"'ak2,1ak1 )"'7k1 7"'7k1 a"'?kl )a

Qibdef 1,1 1621 d2—1,e3,4,1 dg, d2,e4 2
Ujl (klcl 1,...,]?171,]?170,]?2 5o k k‘ 27 k . ]f )
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and
£ de . .
IQ d f](kl 0,J1), (k1,05 j1)]w, U [2 2y I}Z}l,-ﬁ-.

If either e;; = 0 or ké’l > kl , we define

Q 4 def 1,1 Lei d1, dy,
]1 <k2627k262 17"‘7k2,17k1,07k1 5. k ’ "7k1 kl

OF p def 1,1 Lea, d2—1le2d,-1 ;do,1 da,ey 2
vj (Kl eimty- s ki1, ko kg 0k, S )

el,dl )
)

and . .
Q def Q 7ﬂ 1/)1 7+
ot

It is easy to see that v o (resp. U? b) is well-defined in W due to the Condition I{(vi)| (resp.

Condition I{(vii)| and the definition of ey2). In particular, we have nglivti = (k2,e95-- -, ka1, k1) if
€1,1 = 0.

6.2. Construction of type II. In this section, we fix a constructible A-lift QF of type II as in

Definition and construct an element U?i = (’U?i) jeg € W as well as a subset I?i Cny.

Following the notation at the beginning of § @ we have O = {(a1,j1)}, O = {(aa, ja) | 2< a <

t} with j, = ji for each 2 < a < t. Moreover, we have Q, = Qaixja) A for each 2 < a <t, and that

Q7" is a A-decomposition of (a1, j1) which is either A-exceptional or A-extremal. As QrNQ- =9
and Q7 is a pseudo A-decomposition of (av,j1), we have t > 3, k1o = kio, k1,e;, = k2,c,- As we
clearly have #D (o, j;)a > 2 (namely di > 1), we deduce that QF is A-exceptional if and only if
di =1 and c% =q.

If k2 cp—1 < ki1,c;,—1 (which implies e; 1 > 1), we set

def
es1 = max{e |1 <e<epq and k‘lil’e > k2cp—1}s

and if such a e;; does not exist (i.e. kfl’e < kg1 forall 1 < e < eg4,) then we set e .
Hence the following set (which is empty if d; = 1 and ey ; = 0)

di—1l,e1,dy—1

1611 di—1,1 1€1,dq — d1, di,ey1
{k oo ",kl ,“',kl 7k1 k },

)

exhausts all possible k‘l between k1o and k2 c,—1.
If ko.co—1 > K1y —1, we set

def
epo = max{e | 1 < e < egq, and k32 > k1),

and if such a ey does not exist (i.e. kgz’e < kie -1 forall 1 <e < eygq,) then we set e def .
Hence the following set (which is empty if dy = 1 and ey 5 = 0)

1 ,€2, 1 do—1,1 da—lez.dy—1 ;do,1 da,ey,2
(kM R Kt pdeeney,

exhausts all possible k:2 between k2o and k1., —1. Thanks to (5.2.14), we define

€4,2 do—1€2,s

+ e . i
1742 L 50, 07 by 0 L] L0590, 05 30y

e=1 s=1 e=1

We are now ready to define vf}i and [ ff. Our definition of vf}i = (vQi )jes is always of the

J
form
Qi»ﬁ inb 3 > S .
Ujgi def J vy Mo Twy it j = g
W otherwise
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. QF ¢ Qb . OFf . . A
with v, ™ and v; " to be defined below. The construction of v;, " can be visualized in Figure (3
For each 3 <a <t—1, we set

OF g def da,eq,d,

J1 = (ka,caa ka,ca—la ceey ka,h ka,07 kgll’lv e 7ka Cond )
if dg > 1 (this is well defined as €2q = Q™ ) is A-ordinary) and

QF a def
Vs = (ka,caa ka,ca—la cee 7ka,17 ka,O)
+

if d, = 0. Then we observe that, since 2~ is a pseudo A-decomposition of («, j), UjQ1 “ clearly
commutes with each other for different 3 < a <t — 1, and thus we can define

t—1
QF b def 0F.a

J1 - Vi
a=3
We also define
t—1
QF b def . .
Ij = |_|](ka,07j1)7(ka+17ca+17j1)]wj
a=2

and note that the sets in the union are disjoint as 2~ is a pseudo A-decomposition of («, j).
As QF is a A-lift, we always have k2 co—1 # k1,c,—1. We define

k‘l d_ef kt,ct lf dt = 0;
TR ifd > 1

Note that if ;1 > 1 and ko ¢,—1 < Ki1,¢,—1, then we have ky.,_1 < k%’l. Now we claim that if

e11 > 1, then kj # ky'. Indeed, if ko, -1 > k1,1, then OF £ Q. | and we deduce k{ > ka,c, 1

from Condition H and k; # k:%’1 from Condition Hm and II{(vii)l If ko -1 < Kk1¢,—1 and
k2 o1 < kzi’l, then we deduce k} # k%’l from Condition II«I@' and Hm If ko cy—1 < k1,c,—1 and
k2.co—1 = ki’l, then we deduce k; # k%’l = ko,¢,—1 from the fact that 7 is a pseudo A-decomposition
of (aq,j1) satisfying #ﬁ_ > 2.

+ +
Now we are ready to define vﬁ * and I? It ko ey—1 < kie—1 and kp > k%’l, we define
QF ¢ def 1,1 d2,€2.4
Ujl ! = (kQ,CQ—la ceey k2,17 k2,07 kQ PR 7k2 2 y kl,clykl,cl—h veey k1,17
1,1 di,et,q 1,1 di,ey,
kt 7"'7kt ' t7kt,ct7kt,ct—17'"7kt,17k1,07k1 7"'7k11 ﬁl)
and
¢
QF def —+ o, — Q) . .
I7 = Iﬁl U U I? ULy “Ul(kLesd1)s (ke J1)ws -

a=2

If koey 1 < k1,1 and k) < ky"', we define

QF f def 1,1 da,e2 4
vi "= (k2eg—1s- - k21, koo ke ks T R e R -5 R o,
1,1 di.et d, 1,1 di,eq1
kt 7"'7kt 7kt,cz7kt,ctfla"-akt,lakl a"'?kl )

and
t
+ de _ + . . . .
I =1t u | 107 UL Ul ke, d1)s (s 1))w, (k0. 31), (Ko, 7)), -

a=2
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If k9cy—1 > ki, —1 and either e; ;1 =0 or k; > k%’l, we define

QF g def 1,1 da,ey 2
v]l (kl,cl7k2,cg—17' "7k2,1vk2,07k2 5 k 7k1,cl—17" . 7k1,17
1,1 di,etq 1,1 dise1,4,
kt 1"'7kt takt,cwkt,Cz—lv'"7kt,17k1,07k1 ). kl )
and

IQi def[ﬁ’l, UI ,ﬁQUUIﬂ)m UI
a=3

If kgep 1> kiey1, €11 > 1 and k) < k', we define

O, def 1,1 da,
v]l bl (kl C17k2 co—1y k2,17 k2,07 kQ 5. k > 27 kl,cl—la [ERN] kl,la kl,(]v
de, di,

kt“, o TN By Ker 1y ke, By T,

and
IQi def le’ U I 2 U U Iwa’ U IQ b ](k‘l 0,]1) (k‘l 0,]1)]
a=3
+

Note that in each case above, the permutation v ¥ is well deﬁned as the 1ntegers appearing in ’UQ X

are all distinct thanks to Condition H-m, H H-m, H and II in Definition

6.3. Construction of type III. In this section, we fix a constructible A-lift QF of type III as in
Definition @ and construct an element Uf}i = (vyi) jeg € W as well as a subset If}i Cny.

Let a,a’ € Z/t be two distinct elements and € € {1, —1}. We say that o’ is e-adjacent to a if
a' = a+ e and either kqo = koo OF kg e, = ka - We say that a' is e-connected to a if there exist
an integer t' > 1 and a sequence of elements a = ag, ...,ay = a’ in Z/t such that a;» is e-adjacent
to apr_1 for each 1 < ¢ <t'. Tt is obvious by definition that a’ is e-adjacent (resp. e-connected) to
a if and only if a is —e-adjacent (resp. —e-connected) to a’. We say that a subset ¥ C QT LUQ ™ is a
connected component of QT Q™ if it is a maximal subset (under inclusion) satisfying the condition
that, for each pair of distinct elements a,a’ inside, a’ is e-connected to a for some ¢ € {1,—1}.
In other words, if we consider the graph whose vertices are indexed by ns and whose edges are
indexed by Q7 LIQ~, then X is a connected component of Q7 LIQ~ if and only if ¥ corresponds to
the set of edges of a connected component of this graph. We write 7o(QF) for the set of connected
components of QT LIQ~ and it is clear that we have

OtuQ = |_| Y.
Semo(QF)

As Q, is clearly a subset of one connected component for each a € Z/t, we have a natural decom-
position

zjt= || @/s

ZE’TI'O(Q:E)
where a € (Z/t)s if and only if Q, C X, for each ¥ € mp(QF). For each ¥ € mp(2%), we define
Z/)% € (Z/t)s 0 (20T, (Z/t)s € (Z/t)s N (Z)t)~  and b L 4(Z/t)s, and we write js, € T
for the embedding determmed by ¥ € mo(Q2F). As QF is a constructible A-lift of type III and so

Q. Q(Of(‘lx] JA for each a € Z/t, we have €}, is A-extremal (resp. €, is A-exceptional) if and only

if dy > 1 and ky'' > ke, 1 (vesp. if and only if either d, = 0 or d, = 1 and ko' < kg, 1)-
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We fix a connected component ¥ € 7o(2F) for the moment. For each a € (Z/t)s, we set
not & {kac|1<c<c.}
and
0% kol U{ES |1 <s<da, 1< €< eqs)

We define
o def kel ifdg > 1;
@7\ kae, if do = 0.

By conditions IIT III and III and the definition of ¥ we observe that k, ;1 ¢ n®~ and
kg, # kar ¢, —1 for each pair of (possibly equal) elements a,a’ € (Z/t)s. We also define
ny < U (n®*t Un%7).
a€(Z/t)s
We start with defining vf}i and [ f}i for a constructible A-lift QF of type III satisfying ¢ = 2.

+ e
We firstly consider the case t = #my(QF) = 2. For each a = 1,2, we define v;) @ 1 for each
j # jq and

OF,a def 1,1 da €a,d
v, = (Kaycas - ka1, kao kg™ s oo ka™ 0.
+ def QF1 QF2 .
Then we define vjﬂ =v; Tv; Tw; for each j € J and

+ de — . . . .
1% dffwl’ Ifg?’ Ul (k1,15 J1)s (B2,c05 52)]w, Ul (R2,0, 52), (B1,05 51)]w.

Now we consider the case t = 2 and #m(Q2F) = 1, and in particular QF LI Q™ is a connected
component which is not circular (as Q¥ is constructible A-lift of type IIT). We have either k1 o = k2
or ki, = ko, and exactly one of them holds. If k1 g = koo and k] > k5, we define

da, di,e1,q
! 3 kl,cla kl,clfla EE) kl,la kl,O)-

Qiﬁdef 1,1 €2, dy 1,1
(kQ a"'7k2 7k‘2,027k12,02717-- k217k1 5. "akl

J1
and

+ e — . . . .
I 1T UL U (ke 1)y (k2yeas 51wy Ul (R0, 1), (k1,05 51) s
If k1o = koo and k] < k’, we define

d27

1,1 da,
(kys o kg '

Q4 def €2.d. 1,1
2 koo ko1, ko1, ko Ry, Ky

] 1
and

eld
Ykic ke —1,.-,k10).

+ de .
IQ df]wl’ Ulw% U](kl C1a]1) (k2,02a]1)]wj
If kq o1 = ko C2 and k1701_1 > kgycg_l, we deﬁne

OF ¢ def 1,1 dz,
v (k2,co—15 - k21, k2,0, k)5 kg

and

€2,d 1,1 di,es1
2,k17cl,k17cl_1,...,k171,k1,0,k1 k h )

197 I U U (ke 1), (ke 30y Ul (k0. 1), (o 1)y
If k1 o = ko C2 and kl,cl—l < k‘2702_1, we define
QF f def
J1
and

1,1 da,ey 2 1,1 di,e1,q
(k1617k262 1,"'7]{:2,17]{:2,07]{:2 7"'7k2 akl,clfla"'7k1,17k1,07k1 7""k;1 1)'

+ de . .
19 dffwl’ UI 7u72u](k2,07]l)a(kl,Ovjl)]wj

2 are parallel to the ones that have already appeared in

§ Finally we define v? &f w; for each j # j; and vﬂi o vaI ’ﬁwjl for all four cases above.

Here the definitions of e 1, e; 2 and I



MODULI OF FONTAINE-LAFFAILLE MODULES AND MOD-p LOCAL-GLOBAL COMPATIBILITY 85

We devote the rest of this section to the cases when Q% is constructible A-lift of type III with

t > 3. We say that k € ny is a 1-end (resp. —1-end) of ¥ if there exist a unique a € (Z/t)x and
k'€ {kat1,0: kat1,corr} (resp. ' € {ka—1,0,ka—1,co_, }) such that k € {ks0,kq,,} and the elements
(k,ja), (K',jav1) (resp. (k,ja), (K',ja—1)) are different elements in the same (wz, 1)-orbit. We say
that X is circular if it has neither 1-end nor —1-end. It is clear that exactly one of the following
holds:

e cach ¥ € mp(QF) has exactly one 1-end and exactly one —1-end;

o m(F) = {QT UQ~} and QY UQ s circular.
We will use the term direction for an element e € {1, —1}. The (Z/t){; and (Z/t)5, can be visualized
in Figure [4
Definition 6.3.1. Let X € Wo(Qi) be a connected component and k, k' € ny, be two elements. If k
is not a 1-end of X, then we say that k' is the 1-successor of k if exactly one of the following holds
k€ n®t\ {kqc,} for some a € (Z/t)y, and k' = max{k” € n®* | k" < k};
ke n® \ {kqo} for some a € (Z/t)y, and k' = min{k” € n®~ | K" > k};
k = kg, for some a € (Z/t)y, and k' = minn®~;
k = kq, for some a € (Z/t){, and k' = maxn®.
If k is not a —1-end of X, then we say that k" is the —1-successor of k if exactly one of the following
holds

ke n®t \ {kqc,} for some a € (Z/t)5;, and k' = max{k” € n®* | k" < k};

k€ n® \ {kqo} for some a € (Z/t){; and k' = min{k” € n®~ | k" > k};

k = kaq,, for some a € (Z/t){; and k' = minn®~;

k = kq, for some a € (Z/t)5; and k' = maxn®*,

Let ¢ : n, — ny be an injective map with n, C ny a non-empty subset. For each ¢ € {1, -1},
we say that ¢ has a e-crawl from k to k' if there exist an integer s > 1 and a sequence of elements
k = ko,...,ks = k' in ny such that ¢(ky_1) = kg is the e-successor of kg for each 1 < s’ < s.
The set {ky | 0 < s’ < s—1} is called the orbit of the e-crawl above. See Figure [6] for an example
of e-crawl.

For each a € (Z/t)s and € € {1, —1}, we write

klaycafl 1f a & (Z/t); and £ = 17
k,[é} d:ef ka,ca—l ifae (Z/t)i and € = —17
‘ kq if a € (Z/t)y and € = 1;
ke, ifae (Z/t)"z' and € = —1.

It is clear that k([f] is the unique element in n®* LUn®%~ with a unique e-successor of the form kg,

or kqp-

Definition 6.3.2. Let ¥ € m(Q%) be a connected component and ¢ : n, — ny be an injective
map for some non-empty subset n, C ny. For k € n,, we say that ¢ has a e-jump at k for some
e € {1, —1} if there exist an element a € (Z/t)x, and an integer 1 < b < by; such that

/
k’a+b’s,ca+b/;1 >k >k .

(and thus Q. is A-exceptional) for each 1 <% < b — 1 and exactly one of the following holds:

o k= k,[f] > ké+ba, (k) = kqqbe,1 and ¢ has a —e-crawl from kq4pe 0 to the e-successor of kc[f};
ok =k < Katbe,carn.—1, P(k) = min{k’ € n®*~ | k' > k} and ¢ has a —e-crawl from

[¢]

Katbe,cop. tO the e-successor of kg
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We note from the injectivity of ¢ that k4.1 is the e-successor of k4.0 in the first case, and
min n®t%~ is the e-successor of Katbe,co . in the second case. We say that the e-jump at k covers
Katbe,o in the first case, and the e-jump at k covers kqypec,,,. in the second case. We also say that

the e-jump at k covers k' for each k' € | {ka+b’s,07ka+b’6,ca+b/s}- We understand {k} to be
1</ <b—1
the orbit of a e-jump at k. See Figure [7] for typical examples of e-jumps.

Definition 6.3.3. Let ¥ € m(Q%) be a connected component and ¢ : n, — ny be an injective
map for some non-empty subset n, C ny. For each € € {1, -1} and each pair of (possibly equal)
elements k, k' € ny, we say that ¢ has a e-tour from k to k' if there exists s > 1 and a sequence of
elements k = ko, ..., ks = k' such that, for each 1 < s’ < s, we have p(ky_1) = ky and exactly one
of the following holds

e kg is the e-successor of kg _q;
e ¢ has a e-jump at kg_.

We call the set {ky | 0 < s < s — 1} the orbit of the e-tour. We can say that a e-tour contains a
e-crawl, a e-jump or another e-tour by checking their orbits.

A permutation ¢ : ny — ny is called oriented if ¢ has a 1-tour and a —1-tour satisfying the
following

(i) the orbit of 1-tour is disjoint from that of —1-tour, and ¢ fixes each element of ny that
appears in neither orbit;
(i) e if ¥ is not circular, then the fixed e-tour goes from the —e-end to e-end for each
ee{l,—1}
e if 3 is circular, then the orbit of the fixed e-tour is a single orbit of the permutation
@, for each e € {1,—1};
(iii) for each k € |U {ka0,kac,} covered by some e-jump contained in the fixed e-tour, k
ac(Z/t)s
lies in the orbit oé ‘Zhe fixed —e-tour;
(iv) if there exist a € (Z/t)s, k, k' € ny and € € {1, —1} such that
o (k) = kq,0 and the fix e-tour of ¢ contains a e-jump at k that covers kq ,;
o p(k') = kq1 and the fix —e-tour of ¢ contains a —e-jump at &’ that covers kg,
then we have k' > k;
(v) if there exists € € {1,—1} and a € (Z/t)y. such that the fixed e-tour contains a e-jump at
k) which satisfies either go(k‘if]) = k9 or o Lf]) € (n*t Un®")\ (n* ST Un?%7), then
Y is circular, ¢, > 2, k([f] = kaco—1 = min{ky ¢, 1 | o € Z/t} and p(kac,—1) = ka,1;
(vi) for each k € |J {ka0,ka,c,} which is neither the 1-end or —1-end of ¥, there exists a
a€(Z/t)s
unique € € {1, -1} such that
e [ lies in the orbit of the fixed e-tour of ¢;
e the fixed —e-tour of  contains a unique —e-jump that covers k.

For each oriented permutation ¢ and each € € {1, —1}, we always fix a choice of e-tour as above,
and say that ¢ has direction € at some k € ny, if k belongs to the orbit of the fixed e-tour. Two
examples of oriented permutation (when n®+ = {k, ., } and n%~ = {k,} for each a € (Z/t)x) can
be visualized in Figure @ Item can be visualized in Figure

Assuming that there exists an oriented permutation of ny for each ¥ € m(Q%), we define v\(}i

and If}i for a constructible A-lift QF of type III with t > 3. For each ¥ € mo(QF), we define

(vgi)_l € W to be an arbitrary element of W which fixes n \ ny and restricts to an oriented
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permutation of ny. It follows from Condition III{(iv)| of Definition that, for each a,a’ € Z/t
lying in different connected components, we have either j, # jo or (n®+tUn®~)N(n% TUn"~) = 0.
This implies that v%i commutes with each other for different choices of ¥ € 7(Q%). Hence we can

+ +
define U% = (va )jeg by

Q* def ot |
v = H Vs | Wy

EEﬂo(Qi)
Jn=J

for each j € J. If mo(Q0F) = {QT U Q™ } and QT U Q™ is circular, then we write ng+ - ; for the

orbit of the fixed 1-tour of the oriented permutation (vgfuﬂ_)*l\ng tuq_ o and set
+ def . .
5% U 1kdarue-) (ks darue-)lw, -

kengt -1
If OF does not have a circular connected component, then we write ks (resp. k%) for the —1-end
(resp. 1-end) of ¥ and write ny ; for the orbit of the fixed 1-tour for the oriented permutation
(vgi)_1|n2, for each ¥ € m(2F). We write h o #mo(QF) and order mo(QF) as {Zn}wezn in a
way that (k/Ehﬂth/> and (ks,,,,,Js,,,,) lie in the same (w7, 1)-orbit, for each A’ € Z/h. Then we
define

+ def . . . .
I\S% = U ](k/zh,vjzh/)?(kzh/+17]2h/+1)]w3 U U }(k’jzh’)’ <k’-72h’)]w(7
WEL/h keng, , 1\{ks,,}

The rest of this section is devoted to the construction of an oriented permutation of ny, for each
¥ € mo(F) when t > 3.

Lemma 6.3.4. Let ¥ € mo(QF) be a connected component. Fiz a € (Z/t)s and 1 < b < by such
that a + b is 1-connected to a. Assume that

{ Kattrco -1 < Katti—1,c,,, -1 for each 1< V <bwitha+b € (Z/t)s;

(6.3.5) Koy >k for each 1 <V < b with a+b € (Z/t)s..
Then there exists a sequence 0 < bg < by < --- < bs =b for some s > 0 such that

(1] ’
Katvcoyy—1 > Kyipy > Kaqw

for each 0 < b < by and the following hold: for each 1 < s’ <s
b k&+blyca+b’_1 > k([zz-lb] ’ > kéH—b’ fOT’ each bs’—l <V < bs’ 5
. - -1
o ifa+by 1€ (Z/t)5, then k! +,}S, > max{katy_yeon, 1Ko, b

) 1 .
e ifa+by_i € (Z/t)g, then k:L[H_b]S, < mm{ka*‘bsuucwbs/,l—l’ k;‘f’bsl_l}'

Proof. We argue by increasing induction on b > 1. First of all, it is clear that either ka+b’,ca+b/—1 >

k([;rlb] >k for each 0 <" < b, or there exists an integer 0 < b, < b such that

—1
o Katte, -1 > kiyy > K., for each b, </ < b;

. —1 —1
o cither K3} > Katb, e,y 1 08 KLy <KLy,
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We may assume without loss of generality that b, exists, otherwise we simple take s <0 and by < b.

If b, =b—1 and k¢[1+b] > Kot (b-1),c04 (1)~ 1+ then we must have a+b € (Z/t){; and k:[ ] > kl’l+(b 1)

If b, =b—1 and kt[;lb] < k;+(b 1) then we must have a +b € (Z/t)5, and k[ b] < kaJr(b Do
If b, < b—2 and k;[_b] > Katb,cqrs,—1, then we have Koy, 41), Cornyan—1 > k;([H_b] > Katby copp, 1

a+(b +1 a+by,” If bb < b 2 and k[ b} < kaer 5 then
[~1]

atb, > Koy > kaJr(b +1) Which forces a+b, € (Z/t)¥, and so k‘[ b] < Kat(b,41),
katb,.c, 1,10 Up to this stage, we have just shown that

at(b—1)—1"

which forces a+ b, € (Z/t)5, and so k:[ b] > K ) > k!

we have £/ Catipy+1)—1 <
o Katiyc, -1 > ki) > KLy, for each b, <V < b;

o if a+b, € (Z/t)g, then k.3 > max{kas, o,y 1. Ky b

e if a+b, € (Z/t)y, then k[+b] < mln{kaerb,chb,l,kaerb}

Using our mductlve assumption, we obtain a sequence 0 < by < by < -+ < by, = b,. We set
s s, + 1 and by 'p and it is not difficult to check that the so obtained sequence 0 < by < by <
- < by = b satisfies all the desired properties. The proof is thus finished. ]

Proposition 6.3.6. Let ¥ € mo(2F) be a connected component which is not circular. Then there
exists an oriented permutation of ny.

Proof. 1t is clear that X has exactly one —1-end and one 1-end. The proof is divided into two steps.

We firstly construct a certain injective map g : ny,, — nx. which has a 1-tour from the —1-end
of ¥ to the 1-end of ¥ and with n,, minimal possible. We construct ¢y by the following inductive
procedure. Let ¢ : n, — ny a injective map constructed from the previous step, we want to
construct another ¢’ : n, — ny that satisfies n, C ny and ¢'[n, = ¢. If ¢ already has a 1-tour

from the —1-end of X to the 1-end of X, then we set ¢q & ¢. Otherwise (by inductive construction)
¢ has a 1-tour from the —1-end of ¥ to some k € ny, \ n,. We write ag for the unique element of
(Z/t)s, such that the 1-end of ¥ has the form kg, o or Kag,caq -

If either k # kY for any a € (Z/t)x, or the 1-successor of k is the 1-end, we define n, & n, U {k}
and ¢'(k) to be the 1-successor of k.

If k = ki for some a € (Z/t)s, then we define b > 1 to be the unique integer such that
Katbr ey, yy—1 >k > K/ .y for each 1 <b" <b—1, and either k > kqypc,,,—1 Or k <kl

If b does not exist, then we define ¢’ as the unique injective map such that ¢’ has a 1-jump at k
with ¢/(k) € (m®F Lin% ")\ (n% 1+ Un%~17) and ny D ny, U {k} is minimal possible.

If b =1 and either k = ko c,—1 > Kat1,c041-1 OF k = ki, < k)1, we define n, def n, L {k} and
¢'(k) to be the 1-successor of k. We may assume in the rest of the construction of ¢’ that b exists
and

o if k= ka Ca—1> then ka ,Ca—1 < ka+1,ca+1—1;

o if k =k, then k[, > K/ ;.
Ifa+be€ (Z/t)) and k < K/, then we define ¢’ as the unique injective map such that ¢’ has
a 1-jump at k with ¢'(k) = ketp0 € n®™°~57 and ny D n, U {k} is minimal possible.

If a+b e (Z/t)f; and k > max{katb.c,,,~1, K, }, then we define ¢’ as the unique injective map
such that ¢’ has a 1-jump at k with ¢'(k) = kep1 € n®>*, and ny 2 ny, U {k} is minimal
possible.
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If a+be (Z/t)y, and k > kaybc,,,—1, then we define ¢’ as the unique injective map such that
¢ has a 1-jump at k with ¢'(k) = kgyp—11 € n®"F and n,y O n, U {k} is minimal possible.

If a+be (Z/t)y and k < min{kayb,c,, 1, K.y}, then we define ¢’ as the unique injective map
such that ¢’ has a 1-jump at k with ¢/(k) = min{k’ € n®*>~ | K’ > k}, and ny D n, U {k} is
minimal possible.

Our definition of b and division of cases ensures that ¢’ is always well-defined (mainly checking
Definition , and in fact the cases above exhaust all possibilities. Up to this stage, we finish
the construction of our desired ¢o. An example of ¢y can be visualized in Figure

Now we extend g to an oriented permutation of 3. It suffices to extend (g to another injective
map which also has a —1-tour from the 1-end of ¥ to —1-end of X and such that n,, is minimal
possible. In fact, if ¢ exists, then we can trivially extend ¢ to an oriented permutation ¢y of ny
by setting @a(k) L) for each k € ny \n,,. Roughly speaking, each 1-jump in ¢q already produces
some —1-crawl in g, and thus our construction of ¢; reduces to construct the desired —1-tour
from the l-end of ¥ to —1-end of ¥ by connecting the —1-crawls in g together.

We choose two elements k[l]vkh] € (Z/t)s dof U  {ka0,kac,} such that exactly one of the
a€(Z/t)s

following holds

o k) = kh] is in the orbit of the 1-tour of g from the —1-end to the 1-end, and (g has no

I-crawl either from an element in (Z/t)y, to kpj or from kpyj to an element in (Z/t);
ok # kfl], o has a 1-crawl from k) to kﬁ]v and the orbit of this 1-crawl is maximal (under

inclusion of subsets of ny) among all possible such choices.

/

We can uniquely determine a; € (Z/t)s, and ki_q € {ka1,05 kay cq, } SUch that exactly one of the two

possibilities holds
o ky = kf_l} is the —1-end of X;

¢ - {kal,()? kahc(zl} = {k[l} ) kf_l]h
— o has a 1-tour from the —1-end to ki) which contains a 1-jump that covers kf_l].

Similarly, we can uniquely determine ay € (Z/t)s; and kj_y) € {kar 01 kot car } such that exactly one
of the two possibilities holds
° k:fl} = kj_q is the 1-end of %;
o (ka0 kate, } = thiy ok
— g has a 1-tour from kf” to the 1-end which contains a 1-jump that covers kj_y).
Then we apply Lemma by replacing a and a + b there with a; and a} respectively, and obtain

a sequence of integers 0 < by < --- < b, for some s > 0 as stated there. Then we require that
has a —1-tour from kj_y) to kffl] which satisfies

1 with gol(k[fl] ) € (nuths—nt |y

e for each 1 < s’ < s, ¢1 has a —1-jump at ka1+b8/ a1+b,

na1+b51717_) \ {ka1+bs/_1707 ka1+bs/_17ca1+b5,71 }7
e if by > 0, then ¢; has a —1-jump at k([;ﬂbo with (pl(k([];ﬂbo) € (m®F Un?7)\ (nm+hF
na1+1’_).

Note that this —1-tour from kj_y to k’ffu is uniquely determined by the conditions above. Once
we run through all possible choices of the pair ki, kfl] as above, we complete the construction of
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1. An example of the —1-tour from k[_y) to kf can be visualized in Figure|12] The construction

-1
of an orientation permutation ¢y which extends 101 is immediate by letting @9 fix ny, \ ny,.

The proofs of item and of Definition are clear from the construction above.
Item |(v)| also trivially holds as such e-jump never exist if ¥ is not circular. It remains to check
item in Definition Given a, k,k' e as in item we want to show that k' > k. If
e = 1, then the construction of ¢q (especially the 1-jump at k) forces k < kf,,;, which together
with k" > k| (using the fact that ¢ has a —1-jump at k" which covers k, o) implies & > k. If
e = —1 and ¢, = 1, then the construction of ¢y (especially the 1-jump at k') forces k' > kaqt1,¢,,1-1,
which together with & < kq11.c,,,-1 (using the fact that ¢ has a —1-jump at k& which covers kq , )
implies &' > k. If e = —1 and ¢, > 2, then the construction of ¢q (especially the 1-jump at k')
forces k' > kqc,—1, which together with k < k4,1 (using the fact that ¢9 has a —1-jump at k
which covers kg ¢, ) implies k' > k. The proof is thus finished. O

Proposition 6.3.7. Let mo(QF) = {QT UQ~} and QF U Q™ is circular. Then there exists an
oriented permutation of ng+ - -

Proof. Note that QF is a constructible A-lift of type III if and only if its inverse is (see Defini-
tion for inverse). By replacing QF with its inverse, we are simply exchanging Q* and Q~, and
thus exchanging (Z/t)"™ and (Z/t)~. Also, the fact that QT Q™ is circular clearly remains correct
if we exchange QF and Q~. Upon replacing QF with its inverse, there exists a unique ag € (Z/t)~
such that kag,c,,—1 = min{kq,c,—1 | @ € Z/t} and exactly one of the following holds

/ / .
® kag0 = kag+1,0, kgy < kg1 and cqp > 2

/ /
® kap0 = kagt1,0 and kg, > kyo .

The rest of the proof is similar to that of Proposition [6.3.6| and is divided into two steps. We
firstly construct a certain injective map ¢p : ny, — ny which has a 1-tour from kg, to itself and
with n,, minimal possible. We construct g by the following inductive procedure. Let ¢ : n, — ny,
a injective map constructed from the previous step, we want to construct another ¢’ : n, — ny
that satisfies n, C ny and ¢'|n, = ¢. If ¢ already has a 1-tour from Kao,ca, to itself, then we set

©wo & ¢. Otherwise (by inductive construction) ¢ has a 1-tour from ks, to some k € ny \ n,.
The construction of ¢’ is parallel to the one in the proof of Proposition and we can define b
similarly. The construction for each case remain the same except the following two cases

® Kagca, 15 the 1-successor of k, and we define ¢’ by n, U {k} and ¢'(k) = kag,ca, 3

o k=K for some a € (Z/t)s, k does not have kg c,, as 1-successor and b does not exist, in
which case we define ¢’ as the unique injective map such that ¢’ has a 1-jump at k with
¢ (k) = kgy—1,1 € n®~ 1T and ny D n, U {k} is minimal possible.

We fix the 1-tour of ¢g from ka07ca0 to itself in the rest of the proof.

Now that ¢g has been defined, we extend g to an oriented permutation of 3 again by extending
o to some injective map 1 which also has a —1-tour from kUIO;CaO*l to itself, and with n,, minimal
possible among all such choices of 1. We can run the same argument as in Proposition|6.3.6, namely
choosing a pair k), kh], attach with it a1, a, kj_q), kf—l] and then apply Lemma to construct a
—1-tour of ¢ from k_yj to k:{fl]. However, the definition of a1, a}, kj_j, k‘fil} is slightly different as
3 has neither 1-end or —1-end. In fact, k1), a1 and kffl] satisfy exactly one of the two possibilities

® a1 = aop, k[l] = kao,o and kffl] = kao,cao—l # k[l}a
o — {kao0, kal,cal} = {k[l]akffl]} and a1 # ao;
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— the fixed 1-tour of ¢( contains a 1-tour from the kg,  to kj;j which contains a 1-jump
that covers k:f_l].

Similarly, k{l], a} and k(_q) satisfy exactly one of the two possibilities
e a} = ay, kh] = Kag,cay ad k1) = Kag,cag—1;
b - {ka’l,07 ka’l,call} = {kfl}’ k[fl]} and all # ap;
— the fixed 1-tour of g contains a 1-tour from k:fl] to the ka070a0 which contains a 1-jump
that covers k[_qj.

Finally, 1 has a —1-tour from kj_y; to kf—1] characterized by

(1]

a1+b, with SOI(k[il] ) € (nalerS/_l’Jr U

e for each 1 < ¢ < s, ¢y has a —1-jump at k L tb

na1+b5/717_) \ {ka1+bs,7170, ka1+bs/7170a1+b5,71 }
e if by > 0 and a1 # ag, then p; has a —1-jump at k
(na1—1,+ L nal—l,—>;
e if by > 0 and a1 = ag, then ¢ has a —1-jump at kc[;—ll-]bo with 901(]‘%[;4131;0) = Kag,cag—1 # Kag,0-
The construction of ¢; is finished by running through all possible choices of the pair ki, kfl}‘ We

_1]

a1+, With Lpl(k[_l] ) € (n™F Un )\

a1+bg

extend ) to an oriented permutation 9 of ny by setting (k) 'k for each k € nyx, \ n,, . The
proofs of item and of Definition are clear from the construction above. The
same argument as in Proposition proves that @9 satisfies item of Definition m

It remains to check item of Definition and we borrow the notation ¢ € {1,—1} and
a € (Z/t)x, = Z/t from there. If ¢ = 1, then the construction of g forces a = ag, c4y—1 = 1 and
goo(k([ll}) = k([llo] = Kag,cay = Kag—1,1, which is impossible as kag,c,, = Kag—1,c09-1 < kgofl contradicts
the definition of a 1-jump at keg,c,,- If € = —1 and ¢q, = 1, then the construction of ¢; forces
a = ag (and thus k([f] = kao,0) and we must have cqo1 = 1, kg < kg, and

/
ka0+27ca0+2—1 > kao,caofl = ka0+1,ca0+1—1 = kao,o > kao

by our choice of ag. This implies that the fixed 1-tour of ¢ contains a 1-jump at k;,, that covers
Kao,0 and kag+1,c,, 41> and thus ©2(Kag,0) & {Kag,0: Kao,1} by the construction of ¢1. Hence we deduce

that ¢ = —1 and ¢,, > 2 which together with the construction of ¢; force a = ay, kc[f] = Kay,

Ca,ofl
and go(k[[f]) = kqo,1- The proof is thus finished. O
6.4. Invariance condition. In this section, we show that the element vf}i = (vgi)je g e W

and the subset [ ff C ny actually gives an invariant function in the sense of 1' for each
constructible A-lift QF of either type I, type II, or type III.

Lemma 6.4.1. Let QF be a constructible A-lift of either type 1, type 11, or type III. Then we have
(6.4.2) 9 wE ) =12

Proof. We only prove (6.4.2)) when Q¥ is constructible of type III as the other cases are similar.
We firstly treat the case when 7(Q2%) = {QT UQ~} and QF U Q™ is circular. It follows from

Condition II1{(iii)] and III{(iv)] of Definition that

(K, 5)- (% 1) = (K,)) - (wg,1) € IF



MODULI OF FONTAINE-LAFFAILLE MODULES AND MOD-p LOCAL-GLOBAL COMPATIBILITY 92

for each (K, j) € If}i \ (ng+0- 1 X {Jo+ua-})- On the other hand, and we have

‘ + + _ .
(k, Jorua-) - (05 1) = (V3710 ) " (k) dorue-) - (wz, 1)
+ _ . + — . +
e]((vgﬂ_m—) l(k)vJQﬂLLIQ*)’ ((U8+HQ—) 1(k)’jQ+UQ*)]wJ - I?
for each k € ng+ o ;1. Hence we finish the proof of (6.4.2)) in this case.

Now we treat the case when 7o(QF) = {Sp }ez/n and OF does not have circular connected
component. It still follows from Condition III{(iii)] and III{(iv)] of Definition that

. + : +
(K.5) (5 1) =(K,j) (wg,1) €I
for each

®,DelF\ [ |J nsix{is)
EEﬂ'o(Qi)

Ifkeny;\ {vgi(k’z)} for some X € mp(2F), then we have
. + +._ , £ _ ) £ , +
(k,js) - (vF 1) = ((087) 71 (k) ds) - (wa, 1) €)((WE) 7 (k). jw), (08 )1 (R), ds)wy S 1T -
If ¥ =%, for some b/ € Z/h and k = vg:/ (k'zh,), then we have
+ . + . . . +
(/U%h/(klﬂh/)ajzh/) ) (/ng} 71) = (k/Eh”th/) . (wj) 1) G](klzh,vjxh/), (k2h1+17]2h/+1)]w3 - Ig .
Up to this stage, we have shown that
. + +
(kla.j)]'wj ' (vf’} 71) € I?
for each (K',j) € If}i. The proof of 1} is thus finished. O
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7. INVARIANT FUNCTIONS AND CONSTRUCTIBLE A-LIFTS

section, we use invariant functions fgi € Inv constructed in § to prove a list of results stated in
§ The proof of these results are given in § § and § when QF is a constructible A-lift
of type I, IT and III respectively. Finally, we combine results in § [7.1] with that of § to complete
the proof of Statement [£.3.2) in Theorem [7.7.§ and Corollary [7.7.9]

We fix a choice of wy € W, § € £, and a subset A C Supi throughout this section. In this

7.1. Explicit invariant functions: statements. We fix an element C € P satisfying C C Ng A
and recall the subring O¢ C O(C) from Definition We state here a list of crucial ingredients
for the proof of Theorem [7.7.8] and Corollary [7.7.9] The proofs of these results will occupy § [7.4]
§[7.5 and § [7.6] Some rough idea behind these results is summarized in Remark [7.1.6]

Proposition 7.1.1. Let QF be a constructible A-lift of type 1, and assume that QT is A-exceptional.
Then we have

+ oF
FE& 4> e(Q3)F,° | le € Oc
2
where QF runs through balanced pairs satisfying @ < QF and Q= = Qy with 5(935) e{-1,1} a
sign determined by QF and Qoi.
Proposition 7.1.2. Let QF be a constructible A-lift of type 1, and assume that QF is A-extremal.

Then we have .
ng |C € O¢.

Proposition 7.1.3. Let QF be a constructible A-lift of type I1, and assume that Q% is A-exceptional.
Then we have

+ QF
FE™ 4+ e(Q)F° | e € Oc
2%
where QF runs through balanced pairs satisfying @ < QF and Q= = Qy with £(QF) € {~1,1} a
sign determined by QF and Qoi.
Proposition 7.1.4. Let QF be a constructible A-lift of type 11, and assume that QF is A-extremal.

Then we have .
F& e € Oc

We define OESA as the subgroup of O(N¢ x)* generated by Of and F, gﬂi for all balanced pairs

with both Q% and Q= being pseudo A-decompositions of some (a, j) € A. We write oy, OC<5 for
the restriction of OF, (’);f\ to C respectively (for each § € NAY). We write (05 - O¢)’ for the
subring of O(C) generated by OF° and O¢, and write (OF° - O¢) for the localization of (05 - O¢)’
with respect to (05 - Oc) N O(C)*.

Proposition 7.1.5. Let QF be a constructible A-lift of type I11. If both Qt and Q~ are pseudo
A-decomposition of some («,j) € A, then we have
+
FgQ lc € Oc.
Otherwise, we have
+ [oE=
F&le e (0F - 051 0c).
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Remark 7.1.6. The main idea behind Proposition [7.1.1] Proposition[7.1.2] Proposition[7.1.3] Propo-
sition and Proposition [7.1.5|is to compute the restriction f5Qi |c explicitly for each constructible
A-lift and each C € Py satisfying C C Ng x. However, the subtlety is that we do not always have

f?i € Inv(C) and the restriction f?i\c might not make sense. In the proof of the results above,
we actually know exactly when ffQi € Inv(C) holds, and even if f?i ¢ Inv(C), we can still prove
the same technical results stated as above, which is sufficient for our application in § [7.7}

7.2. Explicit determinants. Before starting the proof of Propositions Proposition [7.1.2]
Proposition Proposition and Proposition we need an elementary result (see

Lemma [7.2.5) on explicit formula for determinants of various submatrices of an upper-triangular
matrix.
Given a pair of subsets
(7.2.1) I={i1<---<ip} and I'={i] <--- <i}} Cn,
we associate the element
h
def ..
OéLI/ = Z(Y,S, Zl)
s=1
in the root lattice, where (is,4.) is understood to be the zero element in the root lattice if i5 = i/,.
Note that we have an identity ary = Zg’:l(is,a(is)) for any bijection o : I — I'. We write

orr : I — T for the bijection that sends is to 7 for each 1 < s < h. We say that I is lower than
I', written as I <T', if 45 < ¢, for all 1 < s < h. We notice that agp lies in the submonoid of the
root lattice generated by &, if I <T'.

Definition 7.2.2. Let I’ C n a pair of subsets with associated element oy in the root
lattice. A subset Q C @7 is called an (I,I')-indexed decomposition of ary, or an (I,I')-indezed
decomposition for short, if the following holds:

e ip €I and i, € I for each a = (iq, i) €

® ary = Zaeﬂ .
For an arbitrary subset © C ®*, an (I,I')-indexed decomposition 2 of arp is said to be supported
in © if Q C O. Roughly speaking, an (I,I')-indexed decomposition supported in © is simply one
way to decompose oy into a sum of certain elements in ©. We use the convention that 0 is an
(I,I)-indexed decomposition, for each I C n.

Note that an (I,I')-indexed decomposition does not always exist (cf. Lemma [7.2.3). For each
(I, I')-indexed decomposition €2, we consider the subset I C n uniquely determined by the property

I=IoU{is|acQland I =IgU{i, | a cQ}.

There exists a bijection o : I — I’ that sends i, to i, for each o € Q and restricts to the identity
on Ig. Hence, 01,1/051 is a permutation of I' and we write ey (2) € {1, —1} for its sign.

Lemma 7.2.3. We have I <Y if and only if there exists an (I, 1')-indexed decomposition.
Proof. f I < T, then we can choose an obvious (I,T')-indexed decomposition to be
{(is. i) [ is < i}

Conversely, assume that there exists an (I,I')-indexed decomposition, called €2, from which we
obtain a map o : I — I’ as above. The choice of € is equivalent to the choice of

(7.2.4) {(i,00(i)) |ie I} CIxT.
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If there exists i < i’ € I such that i <’ < 0q(i’) < oq(i), then we replace the elements (i, 0q (1)),
(¢, ox(i")) in with (i,00(i")), (¢/,0x(i)), and hence obtain another subset of I x I’ which
corresponds to a new (I,I')-indexed decomposition. We can repeat this procedure until we have

(i) < oq(i’) for each i < ', which exactly means I <T'. O

For each A € B(R), we have a unique decomposition A = A’A” with A’ € T(R) and A” € U(R).
We write D;(A) for the i-th diagonal entry of A’ (hence of A as well) and u,(A) for the a-
entry of A” (hence the a-entry of A is D;_ (A)ua(A)). For each pair of subsets (7.2.1]), we write

dety 1/ (A) def det(Ary) where Apyp is the submatrix of A given by I-th rows and I'-th columns.
Hence, we obtain the elements D;, u, and detyp in the ring of global sections of B. For © C ot
let Ug C U be the closed subscheme characterized by vanishing of u, for each o € ®* \ ©.

We have the following formula of determinant.

Lemma 7.2.5. If I < T, then we have

(7.2.6) detypy = (HD) > err(Q (H ua>

i€l a€e

where Q runs through all (I,1')-indexed decompositions.

Proof. For each A € B(R), we write A = A’A” with A’ € T(R) and A” € U(R). We firstly observe

that
detLI/ (A) = (H DZ(A)> detLI/(A”).
i€l
Then the formula (7.2.6)) reduces to the formula of detyr(A”), which follows directly from definition
of determinant and the fact that the only possibly non-zero entries of A” are 1 on the diagonal and
ua(A”) = un(A) for some o € ®*. The proof is thus finished. O

7.3. Data associated with a constructible A-lift. In this section, we apply Lemma to
prove Lemma which gives a criterion for fgi to be regular over Ng A, as well as an explicit

formula for f&| N In terms of Dg? for various (k, j) € ny. We recall the definitions of Déj g and

uéa’j ) from §
Let QF be a constructible A-lift of either type I, type II, or type III (cf. Definition [5.3.1}

have associated with QF an element vf}i = (v]th )jeg € W and a subset IQ Cny in §[6. 1 .,

and § We write Sz’ﬂi be the sequence corresponding to v](-z for each j € J via (3.1.2).
recall from 1} that [[;c 7 TN¢ 5 jw; is a standard lift of Ne.a into G. We write A = (AU ))jej
for an arbitrary matrix in [];c ; TN, ;w;(R). We define

1 s ({ky - ynd) and I8 w e (08T (R, n))

at, € Z.®* for the element associate with the pair of subsets IQ = Cn

def
and write ak i = Qqat g J

k,j "k,
In particular, we have aﬁj O‘k+1g if ( ) k) = w; “1(k), and

+ _ _ —
(7.3.1) a%j = ak+17j + (u; 1(k:),uj 1wj(v§-2 (3)
otherwise. For each (k,j) € ny, we define
DQi o {(I/w ,IQ ")-indexed decompositions supported in {8 € ®* | (3,5) € A}} x {j}



MODULI OF FONTAINE-LAFFAILLE MODULES AND MOD-p LOCAL-GLOBAL COMPATIBILITY 96

We also define
95 ) e 5 | DS £ D) €
For each subset  C A, we use the shortened notation
P& def H u(ﬁ])
(B.3)e

Lemma 7.3.2. Let QF be a constructible A-lift, C € P be an element satisfying C C Nea and
(Kuy Jx) € I?i’*. Assume moreover that

e for each (k,j) € ny, we have f jQi |c #£0;

e for each (k,j) € If}i’*, we have D%_l] = {Qk11,5} for some Qgy1; € AN Suppy ;5

e for each (k,j) € Igi’* \ {(kx, Jx)}, we have D%;‘L = {Q;} for some Qi ; C AN Suppg ;-
Then we have fgﬂi € Inv(C) and

- F"
+ (ko) €19\ { (ki) }
(7.3.3) f& e ~ FQHIJ | > eFE] e
H QEDQfJ*

(k.j )eIQi
where () € {1, —1} is a sign determined by Q for each Q € ngj*.

Proof. As ij,Qi j|c # 0 for each (k,j) € ng, it is clear that fgQi € Inv(C). Tt follows directly from
k 7
our assumption and Lemma that
. + O,
e for each (kvj) € If} \Ij *7 fSi’Qi,j|N5’A ~ fsifftvj’Né’A;

. QF x et
e for each (k,j) € I} 7, g0t e ~ i
k1 o]

. + . Q. -
b fOI‘ ea’Ch (kvj) € Ig i \ {(k*a]*)}’ ij,Qi j|N§,A ~ Fg k’];
—_— k k
o the global section f, o+ i € O(FLy) satisfies
by oJ

Q
ot i~ X F

oE=
QGDk* i

where €(Q2) € {1,—1} is a sign determined by (2, for each Q2 € D%jj*

The equation ([7.3.3)) follows directly from the above formulas by further restriction to C. The proof
is thus finished. U

Thanks to Lemma the proof of Propositions Proposition Proposition
Proposition and Proposition can be completely reduced to the study of the set D% p for

each (k,j) € IY", which will be done in § n, § ﬁ and § W respectively.

7.4. Explicit formula: type I. In this section, we explicitly write down the set DQ for each
(k,7) € ngy when the QF is a constructible A-lift of type I. Consequently, we apply Lemma -
and finish the proof of Proposition [7.1.1] at the end of this section. We will use frequently all the
notation from § § and the beginning of §[6]
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7.4.1. Proof of Proposition|[7.1.1. Given a A-lift QF which is constructible of type I with Q% being
A-exceptional. We define {2y, ; L if j # j1, and then define €2y 1, ;, as

sz,k if k> k1,01—1;
0 itk < ki1

Similarly, we define €4y, ; L) if j # j1, and then define €2  ;, as

Qe \{((1r0,711),50)} i k> by
Qd’l:k if k< k‘;’l.
Lemma 7.4.1. Let QF be a constructible A-lift of type I with QT LQ~ C Suppg ; for some j € J.
Assume that there exists a pair of elements (51,7), (B2,7) € A together with (k,j7) € ng such that
° iﬁlzé (o ilﬁl %+ ilﬁ2;
o ap; =P+ o
e for each Q' € D((iﬁl’ilﬁ )i)A Satisfying u;(iqn 1) >k, (B2,5) € Q.
2

Then for each Q' € ng, there exists a partition Q' = Q) U QY such that

Z B =B and Z B = pPa.

(B.9)eN (B.3)€
Proof. Let Q' € ng be an arbitrary element. As we have a%j = Z(ﬁ’j)egl [, we must have

Io \ T = {ig,, i,} and I, \ Tor = {if,, i, }.
Hence if €' does not admit the desired partition, then there must exist a partition Q' = Qf U Qf
such that Qf € D (i, )0 and Q) € D((Z’B?%l)’j)’/\. Moreover, as Q' € D?j, we necessarily have

uj(igr 1), uj(iqy1) >k, so that we have (B2, j) € Qf. Hence, if we set Q) o (QI\{(B=2,4)}) LQY,

Qf 2ot (B2,7)}, then it is immediate that the partition Q' = Q) L, satisfies the desired properties.
The proof is thus finished. O

. . QF  def QF def
For each (k,j) € ny, we write a7’} ; = Z(ﬂ7j1)€91,kﬂ,:j Ié] andi oy i = Z(ﬁ,jl)eﬂg,k,j B. Tt follows
from the definition of Q;j ; and Qs ; above that O‘%k,j’ agm € & U {0}. Hence we can write

af}ij = (la,k,j> 1) for each a =1,2 and (k,j) € ny such that af}ij # 0.

Lemma 7.4.2. Let QF be a A-lift which is constructible of type I with QT being A-exceptional.
Then we have Q1 ;N Qo j =0 for each (k,j) € ng. Moreover, we have

0L
for each k € n satisfying agj-l =1 = (i1,0,01,¢,), and ng; ={Q;; UQay;} for other choices of
(k,j) €Eng.

Proof. Assume that there exists an element (3, j) € €4 ;N 1, ; for some (k, j) € ngy. According to
the definition of €2y ; and {23 ;. ; above, we necessarily have j = j; and there exist 1 < ) < ¢ and
1 < ¢, < ¢ such that 123 =) =g, which implies that ZIB = i1, =i2.¢, as QF is a A-lift. Then
we observe that (i1,¢,,71) € IlQl,k,jl implies k < ki, -1, but on the other hand (i1.,,j1) € IbM’jl
implies k > ki,—1. This contradicts the existence of (8,71). Hence Q1 ;N Qo ; = @ for each

(k,j) e ng.
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As we clearly have agi = 0 and thus ng = {0} if j # jl, it sufﬁces to study the root agj

and the set DQ for each (k, jl) € ny. We claim that O‘kﬂ = alkh + Oéijl Wthh quickly

Ot def def

implies that Qy xj, U Qo j, € DY, for each (k,j1) € ny. We set i1 = 0, o n+1] = 0 and

agi 41 %' 0 for convenience and check by decreasing induction on k. The claim is clear by the

followmg observatlons

k]l’

o if ozak]1 = aﬁiﬂm for each a = 1,2, then we clearly have v?li(k:) = wj_ll(k) and agjl =
O+
ak-‘rl ]1’
e otherwise, there exists a unique a € {1,2} determined by k such that aakﬁ # aa k110

0 o+ Q2 ot
and moreover Qp i %415 = Y%k T Yakd1,:

Let (k,j1) € ny be a pair and Qh ., be an arbitrary element of Dk] , and we want to show that
there exists a partition

(7.4.3) Qiglgfﬂikjluslghﬁ
such that Z,Beﬂa . g = agltj for each a = 1,2. If o’ kj = 0 (resp. Ozgltjl = 0), then we can
clearly set Ql i ') and Q2k]1 & Qh (resp. Q”C]1 ') and Qlk]1 oo Qh ;). Hence it is

harmless to assume that ozlz i %0 # oni . This condition implies that k:171 >k > kie-1.
We now produce the desired partition by checking the hypotheses of Lemma in each of the
following cases (which exhausts all possible cases):

1,1 . . . .

® k11 >k > max{ky ,koc—1}: then gy = 111 and 1’27,6’]-1 =iy, for some 1 < ¢ < ¢y — 1,
which implies that (i1, ;,),J1) ¢ A thanks to Condition I Hence Lemma [7.4.1
applies.

° k:;’l >k > ki¢,—1: then we have ill,k,ﬁ = i1 for some 1 < c < c; — 1, and iy 5, = i;’e
for some 1 < s < dy and 1 < e < e satisfying k:;’e > ki —1. Hence we deduce from
Condition I(vii)| that ((i2,k,j,,7) 1 ;,),J) € A. Hence Lemma applies.

o min{ky1,koco—1} > k > k:%’l (in particular dy = 1, ¢3 = c3): then agj;jl = (i2,0,12,¢,) =

(11,0, %1,¢;) and a?:,:jl = (i1,1,01,¢) for some 2 < ¢ <¢; —1. Let Q' € D ) be an

11,1,01,¢q )5J1
arbitrary element, and Q) = oy {((71,0,71,1),J1)} € D(q, j,)- According to the definition
of k; ! (and the fact that Q~ = Q‘Eﬁi"h)A) if there exists Q' € D ((i11,i1.¢,),j1) such that
uj(igr1) = k, we must have k1o > ki1 > u;(io 1) = ujlia 1) = ka,c,-1 (and thus ¢; > 2).
This implies (i1,1,%2,c,—1) € A which contradicts Condition I. Hence Lemma [7.4.1
applies.
We consider a pair (k,j1) € ny satisfying a%;jl = (i1,0,%1,¢,; ), which implies agj;jl = 0. We
observe that 0417 K, = @1 = (i1,0,i1,¢,) if and only if exactly one of the following holds
eci1=0and ki1 2>k > ki
eepy>land ke, 1>k >kt
In particular, we have Qy , j, = () for such k. For any Q2 € D?jl C D(q, ji),a We have uy, (ig1) > k.
By the definition of e; ; and k:i’l (if it exists), any such Q satisfies k1 ¢, —1 < uj, (in,1). Furthermore,
if equality happens, then Q = QT since Q" is A-exceptional. Thus

+ .
Dy = {7 U{Q € Do,y | wjy (ir1) > ke -1}
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It remains to show that Qi ki
sR,J1

a%zm # a1 = (i1,0,91,¢,). This implies either k > ki, —1 or k; 1 > k. In the first case, the equality

= Qqp,j, for each @ = 1,2 and each (k,ji1) € ny satisfying

Qliyk,jl = O ;, follows from the fact that O is A-exceptional (which implies that #D ((i1.0,i1.0).51) =
1 for each 1 < ¢ < ¢y —1). In the second case, this equality follows from Lemma |5.2.8

Finally, we check the equality Qg Ky = Qo gy If agiﬁ =% a1, this follows from Lemma |5.2.8

maxi
(O‘g’kﬁjl ajl)»A

must have iq, , ol =1, and hence

Othewise, we must have k& > k;’l, Q9 ., is A-exceptional and equals {2 . But the maxi-

mality and construction of k%’l forces any Q' € D, o+

(a2’k7j1 J1),A

O

equals 1, j, by A-exceptionality.

I?i is the subset consisting of those (k, j) satisfying D%# #* D%iL i and it is clear that If;i’* C
n x {j1} € nys in our case. It follows from Condition I that
. e - 1e . le .
](k;e?]l)v (k; 67]1)]wjm](k1 ¢ 7]1)7 (kl ‘ 7]1)]7UJ

for each 1 < s < dy, 1 < e < eys and each 1 < €' < ey satisfying k5 > ki1 > ki’e,. This
together with Condition I implies that

.. . . OF x
Proof of Proposition[7.1.1. Note that we fix a C € P satisfying C C N¢ p. We recall that I; " cC

+
177" ={(kieg) | 1<c<ea =1} U{(k3 1) | 1< s <dy, 1 <e<eas, k5> kie1}-

It follows from Lemma [T.4.2] that

Qt % def Ot Ay

Fgor Wea~ Fe TEFS 4 Y s(Q)F
QlED(Oqu)
Qt </

for each (k, j) satisfying o 1 j = a1, and

k5 1822,k
Fapox jlvea ~ Fe 7 Fy

otherwise. If F£Q+’*|c = 0, then Proposition [7.1.1| clearly follows as Fgﬁ’*(Fgﬂ_)’l]c =0¢€Oc. If

F§2+’* ¢ # 0, then we take (K, jx) o (k1,6,-1,71) and deduce from Lemma |7.3.2| and Lemma [7.4.2
that fEQi € Inv(C) and
+ + + +
(7.4.4) I8 e ~ (BTS2 RE) I
where
ng’a d:ef (Ffﬂa,k*ﬂ,jl )71 H Fgga,k,jl <F£Qa,k+l,]'1 )71

(ko) €19\ [ (k) }

for each a = 1,2. We write n® C n\{k,} for the subset consisting of those & satisfying (k, j1) € If}i >
and Qg 1, # Qa k41,5, for each a = 1,2. Then it follows from our definition of €2 ; ;, and Qg 5,
that
Ll {kicll1<c<e—2} if k' = ki gy -1
{ky YU {k1e|1<c<er—2} ifky' > kg1,
and
n’ = {k;’e | 1<s<dy, 1<e< €2 s, k;’e > kl,Cl—l}'
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Then we observe that
FQﬂ:’a _ (FEQa,k*H,jl )_1 H FEQa,k,jl (Fgga,k-&-l,jl )_1

3
kena
for each a = 1,2. If k%’l = k1,¢,—1, then we have
Ql,k*+1,j1 o ((il,cail,zﬂ»l)vjl)
Fe = Il =
1<c<c1 -2
and Fy VRLed ué(“’c’“’c“)’Jl)Fé PRLeIL £ each 1 < ¢ < ¢; — 2, which imply that
+
(7.4.5) P =1

If ky' > ki e 1, then we have

Féﬂl,k*ﬂ,jl _ H ug(il,cyil,chl)yjl)

)
0<c<c1 -2

Q 11 . . . . Q. 11 . Q . . . . QO .
1,ky g 11,c,0 1,ky " +1,5 1,k1 ¢sd 11,c,0 1,k1 c+1,3
FobRea u(( 1e 1,c+1)7J1)F 2 Uand F.OBFLedt _ u(( 1e 1,c+1)7]1)F LethI gor cach 1 < ¢ <

c1 — 2, which again implies (7.4.5)). Similarly, by checking the definition of Qs , 41 j, as well as the
definition of €51, ;, and €9 ;11 5 for each k € n?, we deduce that
-1
(7.4.6) Fgﬂi,Q _ H ué(izc,iz,cﬂ)m) _ (ng)_l.
0<c<ca—1

We can clearly combine and ( with ( and deduce that
+ oF - _ + +
Fgﬂ + ZE(Q:Ot)Fg o 1lle= ((Fgﬂ ) 1F£Q ’*) lc ~ fgﬂ lc € Oc
+

where QF runs through balanced pair satisfying QF < Qf and Q~ = Qg with £(QF) o e(Y'). The
proof is thus finished. H

7.4.2. Proof of Proposition . In this section, we explicitly write down the set D for each
(k,j) € ny when the A-lift Q is constructlble of type I. Consequently, we apply Lemma -
and finish the proof of Proposition 2| at the end of this section. We will use frequently all the
notation from § and the beginning of § [0}

Given a A-lift QF which is constructible of type I with QF being A-extremal (and thus ki’l
ki,c,—1), we are going to define a subset €, ; C A; for each pair (k,j) € ny. We always define

Qo k. —(lej 7 J1- Ifk’ll>k1 , we define €2y, ;, as

Q'll)Q,k if k> kl,c1—1§
0 ifk<kie 1

If k;’l < ki’l, we define Qg 1, 5, as

Qoo \ {((G1,0,52,1), 1)} if & > kY
Qka if k‘}’l >k > k‘Llel;
1) it bk <Fkie-1.
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Similarly, we define €  ; L if j# gy I ky' > k', we define Q) 45, as
Qe \ {((10,711),51)} if k> k't
Qs if b < ky'.

If k;’l < kl we define Qq 1, ;, et Qy, x for each k € n.

+  def
For each (k,j) € ng, we write a%kd = Z(ﬁ,jl)eﬂl,k,j B and ay) ;= Z(ﬁ,jl)eﬁz,k,j B. It follows

from the definition of € ; and {9 ; above that 0{2:], agltj € (I>+ LI {0}. Hence we can write

agij (ia,kjs g 1 ;) for each a = 1,2 and (k, j) € n7 such that aakj # 0.

Lemma 7.4.7. Let QF be a A-lift which is constructible of type I with QF being A-extremal. Then
we have Q1 ; N Qo g j =0 and Dg? ={Q4; UQoy ;} for each (k,j) € ng.

Proof. A similar argument as in the proof of Lemma, and a case by case check shows that

N k-]mQij =, a%? = a?:]+a§z] and Q5 ;LU g ; € ng; for each (k,j) € ng. As we clearly
have ak = 0 and thus D = {0} if j # 41, it suffices to study the set DQ | for each (k,j1) € ng.

Now we consider a pair (k,jl) € ny and let Qk i be an arbitrary element of Dk i We want to
show that there exists a partition

b _ b i
(7.4.8) Qg = Qg U
such that ZBGQMJI B = O‘zgzz,tm for each ¢ = 1,2. It is harmless to assume that a?j;jl # 0 #

0427,67]-1 (in particular we have k > ki —1). If 4 k,J1 # 11,0 and Z/Qk # 11,,, then we have

(31,0100 g 1 )5 J1) & A (see Condition I. and I D and can deduce the partition from

Lemma |7.4.1 Slmllarly, 1f Go ki 7 G1,0 and @ 4 o F i1, then we have ((io lwn% ) ]1) gé A (see
Condition I{(v)[and I and can deduce the part1t1on ) from Lemma Thus, we just
need to consider the followmg two cases:

® i1, = 1,0 and ill,k,jl = i1,¢,; this forces k < kq.,—1 and so can not happen under the
. +

assumption agk, i #0.

. . . . . . 1,1 . .
® iy j, =410 and 1’27,%]-1 = i1,¢,; this forces mm{kgm_l, k:171} >k > ky ", in particular do = 1,

+ . + .

ek = co, O‘g,k,jl = a1 = (i1,0,1,¢,) and a?km = (i1,1,11,c) for some 2 < ¢ < ¢; —1. The same

argument as in the proof of Lemma gives the desired partition.

Now it remains to show that Qik; = Qq 1, for each a = 1,2 and each (k,j1) € ny. After

applying Lemma [5.2.8] the only cases we have to consider are:
o Qi =y k \ {((41,0,%1,1),71)}; this forces k > k% > k:i’l. Lemma [5.2.8 implies O
{((G1,0,91,1),51)} = Qy, & and we are done.
o Dopi = Qo \ {((41,0,%2,1),71)}; this forces k > k%’l > k%’l. We conclude by the same
argument as in the previous case.
o Oy = Sy, and a?zh = (i1,0,%1,¢,) = o; this forces kzi’l < k < ki,c,—1. This implies

1k]1

Q1 is A-exceptional, thus this case does not occur.
+ A . :
o N9y, = Qy, i and agkﬁ = (41,0, %1,c;) = ov; this forces ko c,—1 > k > k‘%’l. In particular,

Qs . j, is A-exceptional and equals Q"% ) . We conclude by the same argument at the
O‘Q k,j1 J1

end of the proof of Lemma, [7.4.2
The proof is thus finished. ]
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Proof of Proposition[7.1.2. Note that we fix a C € Py satisfying C C N¢ o. We recall that IQ *
I’; 2% is the subset consisting of those (k,j) satisfying DQ £ D$

il . and it is clear that I

n x {j1} C ny in our case. It follows from Conditions I and I that

12 M(krej1) | 0<e<er =1} U{(kS,51) | 1<s<dy, 1<e<ens ki®>kie 1}

if ky' < kp', and

+
15" ={(kre, 1) | 1< e <er = 1Y U{(R3 1) | 1 S s <dp, 1< e<eny, Ky > K11}

if k;’l > k:i’l. Hence it follows from Lemma and Lemma that f€Qi € Inv(C) and

(7.4.9)

where

Q
Fe

+ Q1 0% 2
e~ (B EE) e

+.a def H Filakin (FQa,kH,jl )1
- 3 13

. Qi,*
(k)]l)elj

102

C
e

+
for each a = 1,2. We write n® C n for the subset consisting of those k satisfying (k,j1) € I? *
and Qg 1, # Qa k41,5, for each a = 1,2. Then it follows from our definition of €2 ; ;, and Qg 5,

that

n =

and

1 { {ky" YUk |1 <e<e =2} ifky' >kl

{k1.10<c<c—2} if ky' < Kyt

n? = {ki, 1JU{k|1<s<dy, 1<e<ens, ky*>kie 1}

Then we observe that

Qo k5 Qa kt1,51 \—
_ HFf kn(F€ k+131) 1

kEnae

for each a = 1,2. By carefully checking our definition of €y ; ; and €y, ; for various (k,j) € ny,

we observe that

(7.4.10) o | B o O
0<c<c1—1
and
-1
(7.4.11) FE2= | [ wlerenhn) ) =m0
0<c<ea—1

We can clearly combine ({7.4.10))

and ([7.4.11)) with (7.4.9) and deduce that

+ -V _ +
3 |c=(l"§m(l[‘}Q ) 1) e ~ & e € Oc.

The proof is thus finished.
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7.5. Explicit formula: type II. In this section, we explicitly write down the set DQ for each
(k,7) € ns when the QF is a constructlble A-lift of type II. Consequently, we apply Lemma -
and finish the proof of Proposition and Proposition [7.1.4] at the end of this section. We will
use frequently all the notation from § @ § [7-3] and the beginning of § [6]

We want to define a set €2, ; for each 1 < a < ¢ and each (k,j) € ny. Recall that k; = k;,

if dy =0, and k; = ktl’l if d, > 1. For each 1 < a < t, we set Qg ; Ly if j # 71. For each

3<a<t—1, wedefine Q4 j, d—ewiakforeacthn

If koey 1 < kie,_1, we define Qo & Quyp for each k € m. If koey 1 > kiey_1, we define

9271{:7]1 as

Q¢27k it k> kie—1;
@ if k S ]{71,6171'

If either e; 1 =0 or k} > k%’l, we define Q 5, j, def Qy, for each k en. If e;; > 1 and k; < ki’l,
we define €, ;, as

Qi \ {(Groyie1), 1)} if k> k't
thvk if k< ]{}’1.

Note that if kg c,—1 < k1¢,—1, then we automatically have e;; > 1 and ko1 < k}’l. If
k2.co—1 < ki1,¢,—1 and kj > k%’l, then we define € 5, ;, as

Quy i \ {((F1,0,71,1), 1)} if k> Ky
Q1 ke if ki > k> koo, 1;
ik < Koy 1.

If ko cy1 < k1,c,—1 and k; < k}’l, then we define Q , j, as

Q¢17k it k> kocy—1;
0 ifk<koe1.

If ko,cy—1 > k1. -1 and either e; 1 = 0 or k, > k%’l, then we define Q4 ;, as

Qpy ke \ {((11,0,911),51)} if k> ki3
Qs ke if k < k).

If ko o1 > k1,,—1, €1,1 > 1 and k£<k1 then we define 4y, j, d—Ewilkforeacthn

For each (k,j) € ny and each 1 < a < t, we write aaz:] & Z(ﬂ,jl)eﬁakj B. It follows from the

O

definition of €, ; above that aakj € 7 U {0}, and thus we write o ki

| = (ia,k,j: 11, ;) for each
(k,j) € ny and each 1 < a <t satisfying O‘S,k,j # 0.

Lemma 7.5.1. Let QF be a A-lift which is constructible of type 11 with QF being A-exceptional.
Then we have Qg1 j N Qg i =0 for each 1 < a < a’ <t and each (k, j) € ny. Moreover, we have

DY, = {0t U |_| Qa gy} U{Q U |_| Qug | 7 <Y €Dy s o)1) )
a=2 a=2

. + . + .
for each k € n satisfying a%km = ay = (i1,0,%1,¢,), and D%j ={ el_zl/tka’j} for other choices of
a

(k,j) € ng.
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Proof. A similar argument as in the proof of Lemma and a case by case check show that

+ +
Qi N Qg j =0 for each 1 <a <a’ <t and ozg’j = Ztazl ag’k’] as well as l_zl/ Qakj € Dk] for
acZ/t

each (k,7) € ny. As we clearly have ak = 0 and thus DQ = {0} if j # ji1, it suffices to study
the set D%jl for each (k,71) € ng.
Let (k, j1) € ny be a pair and Qu ;, be an arbitrary element of DQ . We first show the following

Claim 7.5.2. there exists a partz’tion
b b
Qlwi - |_| Qa,k,ﬁ
a€Z/t

S’LLCh thCLt ﬂ =« = . or CCLCh a € Z t.
BeN® a,k,j1
a,k,j1 IA)

Proof. We fix a choice of (k,j1) € ngs such that Qg ; # 0 for at least two different choices of
a € Z/t (otherwise the claim is trivial). Then we choose two non-empty subsets

% C | | Qupyy and Q, € Q]

k,j1
a€Z/t
such that
> 8= 8
ﬁGQu BEQ,

and there does not exist proper non-empty subsets of {3 and (), satisfying the similar equality.
According to our assumption on y and 2,, there exist s > 1 and an ordering Q4 = {(ay,s, j1) }yez/s

. N _ . ./ _ ./ . s /
and an ordering €, = {(ay &, 1)} ez/s Such that oy o = la, and iq, , =ia, ., for each s’ € Z/s.

In particular, we observe that
((iau,slel?i:)zﬁ’S/)’jl) S A
for each s’ € Z/s. It follows from Q4 C || Qg , that, for each s’ € Z/s, there exists a unique
a€Z/t

a € Z/t such that Q4 ¢ C Qq 5 # 0, and thus we have a well defined map ¢ : Z/s — Z/t. We
prove that we always have s = 1 by dividing into several cases.

We firstly treat the case when Q4 N Q4 = 0. We choose s’ € Z/s such that 2 < ¢(s') < tis
maximal possible and u;, (z’oé’i ,) is maximal possible for the fixed choice of ¢(s’). Then we deduce

from ((ia, , +1,igﬁ’5,) j1) € A that ¢(s' + 1) = ¢(s') (as ¢(s') is maximal) and thus gy (ay ryy) >
uj, (@ lau y +1) > uj, (1, &g s ,), which together with the maximality of uj;, (4, us’) implies s = 1.
Secondly we treat the case when Qy C O km # 0. We choose s’ € Z/s such that wj, (i), )

aﬁ s
is maximal possible and deduce from ((ia, ,,, aﬁ ).d1) € A that gy (lay yyy) > wj, (1 o ,+1) >
wj, (10, oy ,), which together with the maximality of u;, (i ﬁS/) implies s = 1.

Now we treat the case when €24 N Ql kojr 70 and QN Qg g5, # 0 for at least one 2 <a <t (and
thus s > 2). We choose an arbitrary s(, € Z/s satisfying ¢(s;) = 1 and note that s{+1 # s, # sy —
as s > 2. We divide into the following cases.

If there does not exist any choice of s such that ],

choose our s; such that ¢(s(,+ 1) # 1. Then the fact

((iaﬁ,s6+17i/aﬁ,s/0)’j) €A

= i1, (hence, k& > ki, 1), then we

#.5(
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together with either Condition IT or IT{(viii)|implies that i, s o1 = 110, which forces ¢(s(+1) =
B)
t and i% o # i1 for each s' # sy + 1. Note that iaﬁ fo = i10 also forces ¢(sy +2) = 1. If
) ,50

iaﬁ,86+2 =141, for some 1 < ¢ < ¢; — 1, then the fact

((ian,s6+27 i/a)j,sf)Jrl)"jl) S A

violates Condition II{(vi)| as i/ » # 11,¢, by our assumption. Otherwise, 7, = iy for some

A, t5h+1

1< <¢ and iau 'p = ii’e for some 1 < e < ej 1, then we deduce from Condition II(vii) and
750 )

the same fact above that kzi < k2 co—1 < K1,,—1, which is a contradiction as there does not exist

k such that (i1, j) € I, ,,, in this case.

) K y . ) ) y y .
If there exists s, such that 2%86 =11, and Zaﬁ,56 # 11,0, then we must have Gy o #* ZO‘W{) =11,

for each s’ # s( and ¢(s; — 1) # 1. If i% , =11, for some 1 < ¢ < ¢; — 1, then the fact
150 )

~

((iau,sé)’i/ )ajl) GA

aﬁ,s&—l

violates Condition II{(vi) as z'fxu , . # i1, Otherwise, i/O‘u = dg(s—1), for some 1 < d <
S0 s )

/
50—

Co(sp—1) and lay = i}’e for some 1 < e < e; 3, then we deduce from Condition II4(vii)| and the

same fact above that exactly one of the following holds
o k1 <koey1 < kiey1;
® kg(sh—1),0 < k2,c0-1 < Fiei—1-
If k%’e < koeyo1 < kie1—1, then k < ko cy—1 < k1,1 hence Qy;, = 0 which is a contradiction.
If k¢(56,1)70 < k‘2,8271 < kl,clfb then Qﬁ,séfl C Q¢(56*1),k,j1 7'5 0 forces k < /{¢(56,1)70 < kz,@fl <
k1 ¢, —1 which implies €y ;, = () and thus a contradiction.
Hence we may assume from now on that i, , =1, and iau,s{) = 11,0 (namely Qﬁ’S/O =gy =
Q7), which implies
o k < ki¢ -1 and either eq1 =0or k > ki’l;
° i’%sl # i1, and by o # i1 for each s’ # s{;
o ¢(s') # 1 for each ' # s,
We have the following two possibilities.
IfOQt = Qr(réf,{ﬁ),A’ as Qb% is a A-decomposition of ((iaﬁ,s/oﬂail,q)ajl) satisfying u, (in,s{)’l) >k,

/!
)

. . ) . . 1,1
we must have i, 1 = i1,c-1 = g 1 (using k& < ky¢,—1 and either e;; = 0 or k > k;),
20 «@

1,31),A”
which implies
((iam%ﬂjil,cl—l):jl) SN
and thus violates either Condition II{(vi)| or II{(viii){as ¢(sp + 1) # 1 and oy g, 7 11,0
150 )
IfQF 4 Qg‘l"jl) A+ then it follows from Condition I1{(xi)| (as well as k < k1 ¢, 1 and either e;; =0

or k> kp') that

® Loy > kic—1 2 k;

o for each 3 <a <t —1, we have either k¢, > k1,¢,—1 0T ka0 < k2,co—1 < k1,611,
which implies that €, = 0 for each 3 < a <t and ¢(s) + 1) = 2. If kyey—1 > ki, —1, then
we have Qo 5, = 0 (using k < ki, —1) which contradicts ¢(sj + 1) = 2. Thus koc,—1 < kie—1,
hence e;; > 1, kacyo1 < k}’l and Qb% is a A-decomposition of ((iaﬁ ,+1,i1,c1),j1) satisfying

>80
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uj, (in78671) >k > k:l > kg ¢,—1, contradicting the fact that (see Condition II-

(i)
Up to this stage, we have shown that s = 1 for all possible choices of €24, },. This finishes the
proof of Claim ([7.5.2]). O

(a2,1) - Qr(r;;}fjl)vf\

Now it remains to analyze Qa k., for each (k,j1) € ng and a € Z/t such that Qg j, # 0.
By Lemma [5.2.8 Qakﬁ # (0 (which equals either Qy, r or Qy. & \ {(ia,0,%,1)}) is the unique

A-decomposition Q' of of}; . such that uj, (iq/ 1) > k, provided either Qy, j is maximal, or ay, j #

a,k,j1

(44,0, %a,c, ). Hence o = Qg in such cases.

a,k,j1

Thus it remains to study €y ; ;, when Qt #£ Qaalxh) pand oy, p = ar = (11,0, 01,¢1 )- Condition II-

implies k; > ki —1. Furthermore ki > ki.,—1 > k and either e;; = 0 or k > k: (

particular a%}i = ap). But then since Q7 is A-exceptional, any A-decomposition €' of ozl k 1
with uj, (igr1) > k must either equal QF or satisfy uj (iq/1) > ki —1. Thus we have either
ot =0° or OF < OF The proof is thus finished. O

a,k,j1 a,k,j1°

Lemma 7.5.3. Let QF be a A-lift which is constructible of type 11 with QF being A-extremal. Then
we have Qg 1 j N Qg g j =0 for each 1 <a <a’ <t and

+
D%,j :{ I_I Qa,k,j}
a€Z/t

for each (k,j) € ng.

Proof. The same proof as Lemma works with the following observation: since Q% is A-
extremal, Qy,  # Q7T for any k. This implies (in notation of loc. cit.):

e In the proof of Claim |7.5.2 i/an , =11, and iau , = 11,0 can’t simultaneously happen.
S0 ITh)
° th kg = = (1 xj, because Lemma [5.2.8/ automatically applies.

O

Proof of Proposition[7.1.3. Note that we fix a C € Py satlsfymg C C Ng,a. We recall that IQ >

Iz 2% is the subset consisting of those (k, j) satisfying D k +1 , and it is clear that I

n x {j1} C ns in our case. It follows from Condition II and II{(iv)| that
(7.5.4)

I = {(kre i) | 1< e < e}U{(k3% 1) | 2<a<t, 1 <5 <dg 1 <e<eqsli{kae |3<a<t)

-
e

if kgep1 < k11 and k) > k7
(7.5.5)

I = (ke 1) |0 < e < e }U{(k3%, 1) | 2<a<t, 1 <5 <da 1 < e < eqsli{kae |3<a<t)

if kgep 1 < k1,1 and k) < kp'!

+ .
(7.5.6) I " ={(kie,j1) | 1<e<er—1}
U{(ka% 1) [2<a<t, 1<s<dy, 1 <e<eqs, ky® > ke -1} U{kae, |3 <a<t}
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if k2 cy—1 > k1,c,—1 and either e;; =0 or kj > kzi’l, and
j: .
(7.5.7) 157" ={(kie,j1) | 0< e < e — 1}
U{(ky% 1) 12<a<t, 1<s<d, 1<e<ess kjy*>kic-1}U{koe, |3 <a<t}

k2.co—1 > kic—1, €11 > 1 and k < k‘%’l. It follows from Lemma and Lemma, that there

exists

Qt x def O+ / /
FeUER 4 Y (F
Q/GD(ale)
Qt <y

such that

QF Qa,k,j
Topot jIven ~ Fe II 7
2<a<t

for each (k, j) satisfying oz?j;j = a1, and

Qa,k,j
fsiniJWsA ~ I %

a€Z/t
otherwise. If ng+’*|c = 0, then Proposition [7.1.3| clearly follows as F§Q+’*(Fgr)_1|c =0¢€Oc. If
Fgﬁ’* ¢ # 0, then we take (K., j.) dof (k1,6,—1,71) and deduce from Lemma [7.3.2| and Lemma [7.5.1

that féﬂi € Inv(C) and

+ O+ Qi
(7.5.8) e~ F TR ) e
a€Z/t
h
where QF a def Qo ks +1,51 y—1 Qa,k,j1 Qa k41,51 \—1
Fe "= (F ) II Fe 0 (F )

(ko)) €19 \{ (ki) }
for each a € Z/t. For each a € Z/t, we write n® C n \ {k.} as the subset consisting of those k
satisfying (k,j1) € Igi’* and Qx5 # Qak+1,5,- Then we observe from our definition of various
Qa,k,jl that
n’ = {ka,ca} U {k(i’e | 1<s5<dy, 1<e< ea,s}
for each 3 < a <t,
n?— { {Fre, JU{k |1 <s<dy, 1 <e<ess} if ko1 < k1e-1;
{ky“|1<s<dy 1<e<eas, ky“>kic-1} if kacy—1 > k1e-1,
and
0l { {kifu{kic |1 <ec<e —2} ifeithere;; =0or kj > k:i’l;
{k1.10<e<e—2} if e >1and k} < k'
Then we observe from the definition of €1, ;, for each 1 < a < ¢ that
-1
(7.5.9) FEo= | [ wlCeetmerh )| = (5
0<c<ca—1
for each 2 < a <t and

(7.5.10) ngﬁl —1.
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We can clearly combine and (| with ( and deduce that

+ of + “\— + - *
FE 13 e Q)F" | e~ (FQ HEE) 1) o= F" I EE) | le~ 187 1e € Oc
+ 2<a<t

where QF runs through balanced pair satisfying QF < Qf and Q™ = Qy with £(QF) = o e(Y). The

proof is thus finished. O
Proof of Proposition|[7.1.4) The proof above carries over verbatim except that in (7.5.8)) the inner
sum over ' disappears (and we always have fEQi € Inv(C)). O

7.6. Explicit formula: type III. In this section, we explicitly write down the set DQ for each

(k,7) € ny when Q% is a constructible A-lift of type III. Consequently, we apply Lemma -
and finish the proof of Proposition ol at the end of this section. We will use frequently all the
notation from §[6.3] §[7-3], and the beginning of §[6l For simplicity of presentation, we assume ¢ > 3
throughout this section. The proof of Proposition when ¢ = 2 is simpler.

We start with constructing a pair of integers 1 < kz < k‘g < n and a set Q,1; € A for each
(k,j) € ng and a € Z/t (uniquely determined by the choice of vf}i). We fix a connected component
¥ € mo(QF) for convenience and assume that a € (Z/t)s throughout the construction. Recall that
(U%i)_”nz is an oriented permutation of ny and we always fix a choice of 1-tour and —1-tour as
in Definition All the constructions below depend on this choice. Let e € {1,—1} be the

direction such that k, 1 is the e-successor of k, o, and define k:ﬁ as follows:

o If ¢, > 2 and vgi(k‘a,l) # kq,1, we set k:g def max{vg (ka1), ka1t
e If the fixed e-tour of (vgi)_1|nE contains a e-jump at k.o or a e-crawl at k,o, we set
kE Y k.

e Otherwise, we define k% as the unique element such that the fixed e-tour of (vzi)_l\nE
contains a e-jump at k% which covers ka0 and satisfies (UE )"L(kE) & not\ {ka,co -
Observe that in the first item either v$ (k:a71) = ka0 or there is an e-jump at v$ (ka,1) that covers

kap-
Let € € {1,—1} be the direction such that minn®~ is the e-successor of kq.,, and define k’ as
follows:
e If the fixed e-tour of (vgi)_lh12 contains a e-jump at kq ., or a e-crawl at k,.,, we set
K ke
e Otherwise, we define k as the unique element such that the fixed e-tour of (vgi)*l\nz
contains a e-jump at kg which covers kg, .
The definition of k% and k> can be visualized in Figure

Lemma 7.6.1. The following inequalities hold:
(i) kao > kb > K);
(i) Kacam1 > kg > Kacos
(iii) kb > k.,
for each a € (Z/t)s.
Proof. We firstly check item We write € € {1, —1} for the unique direction such that k,  is the
e-successor of kq . If k:g = kq,0, then we have nothing to prove. Otherwise, there exists a unique
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choice of @’ € (Z/t)y, such that the fixed e-tour of (vgi)_l\nz contains a e-jump at k([f,}, and this
e-jump covers kq . If @ = a — ¢, then we have k([f,] < koo = kqo. If  # a — ¢, then we have
k) < ko cen .1 < kaco = kao. This implies k% < max{k'5, ky1} < kao. On the other hand, we
always have kg > k([f,} > k! as the e-jump at k([f,] covers kq 9. The proof of item is thus finished.

Now we check item We write ¢ € {1, —1} for the unique direction such that minn®~ is the
e-successor of kg, ,. If k:g = kg c,, then we have nothing to prove. Otherwise, there exists a unique
choice of @’ € (Z/t)y, such that the fixed e-tour of (vgi)_”nz contains a e-jump at kf,}, and this
e-jump covers kg c,. If @’ = a — ¢, then we have k‘LE,] > kate,) = kaea- If a’ # a — ¢, then we have
kc[f,] >kl > kao—e.co_. = kac,- Hence, we always have kz = k([f;] > kq,c,. On the other hand, we
L[f,} ] covers kac,. The proof of item |(ii)| is thus

always have k‘z =k, < kqc,—1 as the e-jump at k:([j

finished.

It remains to check item |(iii)} If either k:g = kg0 Or kg = kq,,, then we have nothing to prove.
Hence, we assume from now that kb < kao and k2 > ko.,. We write e € {1, 1} for the unique
direction such that minn®~ is the e-successor of kq,, and thus k, 1 is the —e-successor of k.
Our assumption ensures the existence of a’,a” € (Z/t)y, such that

e the fixed e-tour of (v%i)_l\nE contains a e-jump at k([f,], and this e-jump covers kg, ;

]

e the fixed —e-tour of (vgi)_1|nE contains a —e-jump at kC[LT,E , and this —e-jump covers kg .

These items imply that kz = k([f/] < kg,cq—1 and kg = kL;E} > k!. Hence, if kzg < k:'; we must have
(vgi)_l(kz[e}) = kq,0 and (vgi)_l(kc[lf}) = k,,1 and this contradicts item of Deﬁnitionm O

a/

We now define Q, 1 ;. We set g ; e if j # ja, and set

Qo i \ { (100, 70,1), )} if ca > 2 and kb > k > min{v®" (ka1), ki };

q ., Qo if ¢, > 2 and min{vﬁi(ka,l), K} > k> kb
@hoda Qi if o =1 and kb > & > k2
0 if k> kb or k < k.

Observe that when ¢, > 2, the condition kg > vgi(ka,l) is equivalent to kg =kq1 > vgi(k‘a,l). We
deduce that €, ; # 0 if and only if j = j, and K>k > k.
0

For each a € Z/t and (k, j) € ny, we write af}ij oo Z(B,ja)eﬁakj B e @g LI {0}, and aatj =

. . . . . def
(tak) zihk’j) whenever €, 5, ; # (). For technical convenience, we put extra definition Qg ,41,; = 0

Dgil,j ' {0} and ai}il’j €0 for each a € Z/t and j € J.

Lemma 7.6.2. Let QF be a constructible A-lift of type I11. Then we have
() o g} O gy = 0 (and. thus Qs 0 Qg = 0) for each (k.j) € ng and
each a # o' € L/t with Qqp; # 0 # Qo 1 j;
(it) if Qg i, # 0, then Qg pj, = Z“ag‘i DA is A-exceptional and
X k,jala)s

il],jk:,]'ahja)y/\ ’ uja (Zlel) Z k} = {Qa)kujfl};
(1ii) || Qakj € Dg? for each (k,j) € ny;
a€Z/t

i

(7.6.3) {(YeD

(a
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(iv) for each & € mo(QF), (k,j) € (nx1 Unyg 1) x {js} if and only if there exists a € (Z/t)x
such that Qg 7# Qg k41,5-

Proof. We firstly prove item It is clear that ik ; # i for each a # a’ € Z/t and each

a/7k7j
(k,7) € ng, thanks to Conditions I1T{(iv)] and III{(v)| and the fact that QF is a A-lift.
If there exist a # o' € Z/t such that Qqp; # 0 # Qo k; and i, . = i,y 5, then there exist
¥ € mo(QF) and € € {1, -1} such that a,a — e € (Z/t)s with @’ = a — ¢ and fakg = twkj =

. . . £ . .
laco = fa—e,cq_.- Upon exchanging a,a’, we may assume that (v%2 ) llnz has direction € at kg,

(cf. Definition [6.3.3) and thus k__ > k) = k,.,. Hence, (vgi)_l\nz has a —e-jump at kJ__

a—¢e
min{kg, kaco—1} =K>_. hence k <K’__. But Q, . ; # 0 forces k > k’__, which is a contradiction.
If there exist a # o’ € Z/t such that Qg1 ; # 0 # Qq/ k,; and g j = e j, then there exist ¥ €
m0(Q%) and € € {1, —1} such that a,a+¢ € (Z/t)y with @’ = a+e and igkj = o kj = 0,0 = Gate,0-
Upon exchanging a,a’, we may assume that (v%i)*llnz has direction ¢ at kq 0 (cf. Deﬁnition

which covers kqc,, which implies K e {kg,ka7ca_1}. The condition i/, , i = flac, forces k <

and thus ko = ngrE > k%. Hence, (U%i)*lhlZ has a —e-jump at &' € {k’, ., k. .} which covers
kao. The condition igick; = 440 forces k > max{k},. k. .} hence k¥ > k. The condition
iak,; = la0 forces either ¢, = 1 or ¢, > 2 and min{vﬁi(kml),kg} > k > k. In the first case
kK = k:g < k and hence Q1 ; = 0, a contradiction. In the second case, since kg € {kq1, k'} we have
kg =kq1 >k > k’'. However this forces in(kaJ) = k', which is a contradiction. Thus we finished

the proof of item ”

Now we consider item Q= Qg &, then itemis a direct consequence of Lemma
Therefore it suffices to prove item when Qg ki = Qo \ {((7a,0,%0,1),Ja)} # 0. But since
Qo € Qy, x has iiz,k,ja = i;w,k’ this follows again from the corresponding property of {1, ; in
Lemma [5.2.8

We now prove item for each (k,j) € ny by a decreasing induction on k. The initial step
is given by Qg 41, = 0, Dgil,j = {0} and O‘gil,j = 0 for each a € Z/t and j € J. Suppose we

already have || Qqpt15 € ng_tl ; for (k,j) € ny. We want to show
a€Z/t ’

+
(7.6.4) |_| Quj € DY
a€Z/t

We divide into two cases:

Case 1: (v7")~!(k) = w; ' (k), namely (18" )~ (k) = k for each ¥ € m(QF) with js = j. Then

it is clear that a%j = a%iu and Dg? 2 ngfu. If (k,j) ¢ ng x {jx} for any ¥ € 1(QF), then we
clearly have Qg x ; = Qq 41,5 for each a € Z/t. If there exists ¥ € mo(QF) such that k € ny, j = jx

and k does not lie in the orbit of either the fixed 1-tour or —1-tour of (vgi)*1 Iny,» then there exists
a unique a € (Z/t)y. such that exactly one of the following holds
o ken®t, k> kb
e ken® , k<k,
which forces Qq 1 ; = Qo pr1,; =0 and Qg 1 j = Qg 41, for each a’ € Z/t\ {a}. Thus (7.6.4]) holds.
Case 2: (in)*l(k) # wj_l(k). Thus there exists ¥ € m(QF) and e € {1, 1} such that js = j
and k lies in the orbit of the fixed e-tour of (vgi)*1|n2. Note that ¥ is uniquely determined by
(k,7) (as ng Ny = @ for different ¥, % € 79(QF) satisfying jx = jsy = j). In the following, we
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prove || Qur; € Dk by a direct comparison between €2, ; and € g+1,; for each a € Z /t. We
a€Z/t

use the notation (7,i') for an element of &+ L1 {0} U @, for arbitrary two integers 1 < i,i’ < n.

If there exists a € (Z/t)s such that k € (n®*\ {ka,ca}) U {kao}, ka1 is the e-successor of kq
and the fixed e-tour of (vzi)_lhlZ contains a e-crawl at k, then by inspection Q4 ; = Q4 41,5 U

_ + + _ +

(7 (k) uy (7)1 (R)), >} ak] = oy + (g (), uy (087) 7 (K)) and Qur g = Qa5 for
each o’ € Z/t\ {a}. Thus ) holds.

If there exists a € (Z/t)g such that £ € (n®™ \ {ke0}) U {ka.c, }, minn®~ is the e-successor of
kq,c, and the fixed e-tour of (vgi)_1|nZ contains a e-crawl at k, then by inspection we necessarily
have w;(iq k) =k, wj(iqpt1,5) = (vgi) L(k), which implies that

ot Q* -1 —1/, QF\— : ; ot ot
Qpi = Opt15 = (uj (k)7uj (UE ) 1(k)) - (Za,k,jJ(l,kﬂLl,j) =04k~ Qg k+1,5-

As we clearly have Qg 1, j = Qg p41,; for each o’ € Z/t\ {a} in this case, (7.6.4) holds.

If the fixed e-tour of (vE )Yy contains a e-jump at k = k) for some a, €, b as in Definition
then we have
© Quivverj = Qagie and Quype 1, = 0 for each 1 < b < b — 1 satisfying Katbrec, o,
ka+(b’+1)e,ca+(b/+l>5§
© Quiper; = 0 and Quppepr1,; = Qaywe for each 1 < b < b — 1 satisfying kgipe0 =
k;a—&—(b’—i-l)e 05
o if k =kqe,—1 and b < by — 1, then we have Qak; = Qap+1,; U{((u; L(k), Ga,ca)s J)};

U
o if k=Fk/ and b < by — 1, then we have aa’kj = 512k+1j — (fa,0,u; “Hk));
® if kotpe0 = Kay(p—1)e,0 and b < by — 1, then we have

. _ EN. .
Qa+b£,k,j = Qa-i-ba,k-ﬁ—l,j U {((Za+ba,07uj l(vg ) l(k))aj)}

with u-*l(vgi)_l(k‘) = iq+be (and note that k > ka+b€ follows from item of Defini-

tion when the fixed —e-tour of (v$ )*1\112 contains a —e-jump at ’Ugi(kaerE’o));
o if Kyibecyry. = ka+(b_1)57ca+<b71)€ and b < by, — 1, then we have Qq4pe 1 j = 0 and

_ +._ . .
gtbe k+1,j = ((U] l(vg ) 1(k)aza+b£,ca+bg)v])

(and note that Qg pe k41,7 = Qatbe follows from item of Definition when (vgi )~ (k)
ka+b5,0a);
o if b=by, thencq, > 2, k =kqe,—1, (vgi)_l(k) = kg1 (cf. item of Definition ) and

_ ) £, )
Qo = bty U (] (k) iae,)s 4), ((ao,u; (05 ) 7 (R)), 4)}:
Oy gj = pt1,, for each a’ ¢ {a+b'e |0 <V < b}
In all cases above, we check that
95 (%5 -1 Qi Qi
Qp i = Opy145 = (U’j (k?),uj (v ) Z %+b'5 kj — Yatbe k41,5
0<b'<b

thus holds. Note that an example of the above comparison between €, ;. ; and €, 41 ; can
be visualized in Figure [T4]

We have now checked in all possible cases, and the argument above actually proves
item [(iv)| at the same time. O
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Lemma 7.6.5. Let QF be a constructible A-lift of type 111, ¥ € mo(QF) be a connected component,
a € (Z/t)y, be an element such that there exists k € n that satisfies Qq . j, = Qa. Then there exists
unique kqx and k;’* such that the following conditions are equivalent
L4 Qa,k,ja = Qa;
o Loy > k> kéh*.

+
Furthermore, ke, € {ka,ca_l,vg (ka,1), kg} Nny 1, kfm = max{k}, kg} €eny, and kg < kgco—1-

Proof. The existence is clear from the definition of Q4 j,, as is the fact that k] , = max{ky, >}
and kg« € {ka,co—1, vgi (ka,1), k‘g} The fact that k., € ng 1 and &, € ny; follows from a case
by case checking using the definition of k% and k:z Finally, we note that Qqg, , j, = €, forces
Qo k. = a which necessarily implies kg < kg,c,—1 by the definition of Qy, , .- ]

Lemma 7.6.6. Let QF be a constructible A-lift of type 111, and let a € Z/t, ¢ € {1,—1} and
(k,j) € ng be elements such that the following conditions hold:

" . . ]
e Vi #0 and Takj = laca = late,cates
o cither core =1 0ork < kayecopo—1-

Then we have Qg ek j = 0.

Proof. By checking the definition of 2, 1 j, we deduce from the second item that either Q. 1 ; =

0 or Qgier,; # 0 and i;%’k’. = lgte,cos.. However, as we have i;+€7k7j + i;7k7j whenever 1, ; #
0 # Qqick,; thanks to item (i)| of Lemma m this together with ngg = lac, = late,co. fOTCES
Qa-l—s,k,j = @ OJ

Lemma 7.6.7. Let QF be a constructible A-lift of type 111, and let ¥ € 7o(QF) be a connected
component. Then we have

Qa/ > +
1;5 if d € (ZJt)

Qa/7 g Qa/7 s\ — ;
e (FE)~1 ifd € (Z/1)s.

for each o' € (Z/t)s.

Proof. For each a € (Z/t)s, we define ng & {kenx | Qo kjs # Qo kt1,js ), and it is clear that

Qa/,k,jz Qa’,k+1,j2 -1 Qa/,k,jz Qa’,kJrl,jE —1
II % (Fe =11 F (Fe )

keng keng |

If o’ € (Z/t), then from the proof of Lemma exactly one of the following holds:
’ + / ’ +
o "\ {kac,}) Mgy # 0 and 02 (ke 1) ¢ %\ {karc, }. Then ng | = {vg" (ko 1)} U
(na/’+ \ {ka’7ca/}) and
o Qa’vka/,ujz = Qa’,ka/ﬁc+1,jz U{((ia/,crTac+1),Jx) } for each 1 < ¢ < cq — 1;
© Qa’vvgi (kar 1):0% - Qa’,vgi(kalg)-i-ldz U {((Za’,m Za’,l);]Z)}'
’ + / +
o n* "\ {ky ., })Nnxy # 0 but v (kar1) € n¥0H\ {ka e, }- Then v (k1) = kar e, 15
n271 = n%/,l = na/,+ \ {k‘a/’ca,} a,nd
o Qa’,ka/’c,jg = Qa’,kauc-&—l,jz U {((ia’,ca ia’,c—&—l)ajE)} for each 1 < c <cy — 2
o Qa/,kazm ,—1:J% = Qa’,k’a/’c ,—1tLJs U {((ia’,ﬂaia’,l)ajz)a ((ia/,ca/—lyia’,ca/)ajZ)}'

o "\ {ky,}) Nng1=0. Then n&, = {k%} and Q, =, and Q = (.

laki/ Js alvki/+17j2
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From the above descriptions, in all cases we get
Qa’,k,j Qa’,k+1,j —1 2y
[T e = (F, =)= Fe
kenazla
If ' € (Z/t)y;, then from the proof of Lemma exactly one of the following holds:

o (0~ \ {kao}) Nng1 # 0. Then ng; = {k}U{K € 0™~ | K # koo, ¥ > k).
Furthermore,
o For each 1 < s <d, and 2 < e < ¢, 5 satisfying ks’e > kb/ we have

Qa/k;;l UG ol c) ]2)|0<C<C/—1} Q ,k11+1] Ll{(( Pyl cl ) Jjz)}
1. .
Qur e g UL i en),35)) = Qe 1 U L ), 35))-
o For each 2 < s < d,, satisfying k:Z}l > k‘z, we have
s—1le o s—1 - . 5,1 . .
Qa’,ks’,l B Qa e /,1 U {(( ! Za’,csfl)%)z)} = Qa’ ks’l—‘rl,j L {((ZZ/ 71&’,02,)7]2)}'
o We have Qa,7k2”j2 = () and Qa’,kz,-#ldz = ((ujq (vZ )R dae,), Js)-
e (0%~ \ {kyo})Nng; = 0. Then n%lyl = {k’,} and Qi jo =0and Q4o 40 = Q.
From the above descriptions, in all cases we get

Qa/, N Qa’, ,J — Qa' —
[T E =)= = (7)™
kEn%',l
The proof is thus finished. U
We need the following condition.

Condition 7.6.8.
e There does not exist (a,j) € A such that both QF and Q~ are pseudo A-decompositions of

(a, 7).
e For each AP-interval Q of QF which is a pseudo A-decomposition of some (aq,j) € A, we
have

o O\ {((i100g):5)} S (5 0); (cf: Deﬁnition foriqa);

o ifig) # m?&as,j),ml’ then we have ((iq,1,1y,,),J) € Q and uj(i1) < u;(i Qpex ol)i

Recall Ogi\ from the paragraph before Proposition

+
Lemma 7.6.9. For each constructible A-lift QF of type 111, if ng ¢ Ogs}\-(’);f | then there exists

h:
a constructible A-lift QF of type 11 satisfying Condition |7.6.8 and FQO (FQjE)_1 € (’)ps

Proof. We define a new balanced pair Qi by the following step by step replacement for each
A-interval Q of QF which is a pseudo A- decomposmon of some (agq,j) € A we replace () inside

QF or Q7 with (0 )i Tt is clear that Fg0 (Fﬂi) L € OP%. Then we check the definition

of constructible A-lift of type III for the balanced pair Qi following the arguments in the proof of
Theorem |5.3.20L The proof is finished by the observation that either Q§ is a constructible A-lift

QF of type IIT satistying Condition [7.6.8] or it satisfies %0 ¢ O, . 0% O
o of type satistying Condition [7.6.8|, or 1t satishes ¢ S en Oen -
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Let QF be a constructible A-lift of type ITT with a fixed choice of v%i and [ f}i. We write 75 (Q7F)
for the set of AP-intervals of QF that are contained in Q1. We are mainly interested in the following
conditions on Q*:

Condition 7.6.10. The constructible A-lift OF of type 111 satisfies D%? ={ I Qqx;} for each
a€Z/t
(k,j) €ng.
Condition 7.6.11. The constructible A-lift OF of type I satisfies Condition and the following
e O Q™ C Suppg ;;
e for each a € (Z/t)~, Q, C Q™ is a Al-interval of QF and k, , Ky, . exist (cf. Lemma ;

e cach Q € 75(Q7) is a pseudo A-decomposition of (agq,j) for some (aq,j) € A;
o if we set

(7.6.12) k. < min ({k |a € (Z/t) YU {ujliome 1) |92€ 7T0D(Q+)})

Q:9) N

and
(7.6.13) K, & max{kl,, | a € (Z/t)"},

then we have k, > k! and the following are equivalent
o #D¥. > 2;
o ke >k >k;
- _ ) 0+ N dO+)-
o Q= ael—Zl/tQaJCJ €Dy and k <, (mmg,j),ml) for each Q € 75 (Q27);
+ R .
o for each k, > k > ki, Q - € D¥; \ {Q} if and only if

B :
= |_| L
Qenfl(Qt)

where QE} kj € Diag.j)a With uj(ig ) >k for each Q2 € 75 (QF).
ILAS) W) Q,k,j°

For each constructible A-lift QF of type III satisfying Condition we define k7 as the
maximal integer (if exists) satisfying the following conditions:
e there exist Q € 75/(QF) and ' € D (aq,j),a such that kY = u;(igr1);
e there exist ¥ € m(QF) and k* € ny 1 such that (K7, j) €](k*, ), (k*,5)]
o k> k! >k,

Condition 7.6.14. The constructible A-lift OF of type 111 satisfies Condition [7.6.11] and k" does
not exist.

Lemma 7.6.15. Let QF be a constructible A-lift that satisfies Condition [7.6.11. Then we have
ke¢ | ngipandkie || nga.
ZEWQ(Qi) ZEWQ(Qi)

Proof. The fact k;, € || nyx; follows directly from (7.6.13)) the fact that &, , € || mnx;
Semo(QF) Semo(QF)
for each a € (Z/t)~ by Lemma[7.6.5] If k, = k, . for some a € (Z/t)~, we have nothing to prove as

kax € ] mny_; by Lemma|7.6.5 Hence, we may assume from now that k, = uj(iQx(nax 5 A71)
Sem(OQF) aqg.d),

for some ) € WE(QJF) (cf. (7.6.12)). Assume on the contrary that k, = uj(igr(nax 5 A’l) € ny; for
@07 ),
some ¥ € mo(QF). Tt follows from Condition and Condition |7.6.11| that there exists a unique

wy
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a € (Z/t)Y; such that Qy C Q and k, = uj(mr(nax 5 o) € n”* U {ka o}. Then we deduce from
a0,j),

Condition [7.6.8) that a = a' + 1 € (Z/t)5; lacq = Ta—1,co_1 = ln, and “j(iﬂ?;agj) o) = ka1, 1-1.

If the fixed 1-tour of (vgi)_lhﬂE contains a 1-jump at k4—1,, ,—1 (which necessarily covers kg, ),

then we have k > k:(’l 2 k:z = kg—1,c,_,—1 = k. which is a contradiction. Otherwise, the fixed

—1-tour of (vgi)_1|rlZ contains a —1-jump at some k which covers kq, ,, which implies that k, =

ka—t1,co_1—1 >k > ko, > ks, which is also contradiction. The proof is thus finished. O
We have the following classification of constructible A-lifts of type III.

Lemma 7.6.16. Let QF be a constructible A-lift of type ITI. If both QF and Q~ are pseudo A-
decompositions of some (a,j) € A, then Condition |7.6.10| holds. Otherwise, there exists a con-
+ i +

structible A-lift QF of type III satisfying FgQO (F%Qj[)*1 € OghA : O;kﬁ |, such that one of the
following holds

oF <|QF|

© Fe? €0 Ogn

° Q(jf satisfies Condition [7.6.10;

° (23[ satisfies Condition [7.6.14}

We firstly prove Proposition [7.1.5| assuming Lemma [7.6.16] and then devote the rest of section
to the proof of Lemma [7.6.16
Proof of Proposition assuming Lemma[7.6.16 Note that we fix a C € Py satisfying C C N¢ 4.
We recall that Igi *CI f}i is the subset consisting of those (k, j) satisfying D%j + D%:L ;- As O+
is a constructible A-lift of type III, it is clear that
. +
(7.6.17) (ng,_l X {jz}) N If} =0

for each ¥ € 7 (%), It follows from Lemma[7.6.16|that we only need to treat a constructible A-lift
QOF that satisfies either Condition [7.6.10] or Condition [7.6.14] )
We firstly treat the case when QF satisfies Condition [7.6.10, namely D% ;=1 U Qapy} for

a€Z/t
each (k,j) € ny. It follows from Lemma [7.3.2[ and D%ﬂ; ={ U Qqpx,;} that fgi € Inv(C) and
a€Z/t
+ O,
fgﬂ le ~ H Fg “1le
a€Z/t
with . 0 0
O=F q def a,k,j a, v\ —
}715 a def H }715 k]Z(F£ k+1jz) 1
kenz,l
for each ¥ € 79(Q2F) and each a € (Z/t)s. It follows from Lemma that
+ + -\ _ +
F e~ (FEFEE) ™ le= | TT F)le| TI FE8™|le~ 2l € Oc.

aE(Z/t)+ a€(Z/t)~

Now we treat the case when QF satisfies Condition [7.6.14] and in particular these does not
exist (a,j) € A such that both Q7 and Q= are pseudo A-decompositions of («,j). Recall from

Lemmal7.6.15/that k, ¢ || mnyjandkl € || mnxi. AsQgyp; for each a € Z/t remains the
Yem(QF) Yem(QF)
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same for each k, > k > k), we deduce that k ¢ || ny; for each k, > k > k. If there exists any
Sem(Qt)
. OF % . . .
(k,j)el; “withk¢ || mng;1,then we deduce from (7.6.17), item |(iv)| of Lemma |7.6.2, and
ZGWQ(Qi)
the last two items of Condition [7.6.11|that k, > k > K and there exist Q € 75 (1), Q' € D(o, j)A
and k' € ny; such that k = wu;(igr 1) and (k,j) €](K',7), (K, j)]w,. If k = ki, then it follows

from k. ¢ || nx;, Condition ITI{(ix)|and Condition [7.6.8 that k = k, = u; (Z'anax 5 1) is the
Sem (%) c

+
1-end of an connected component of QF LI Q~, which contradicts (k,j) € I? *C Igi. Hence, we
deduce that k < k. and k must exist (as described after Condition [7.6.11]) which is a contradiction.
Consequently, we have

* .
[f; * |_| ns1 | ).

Yemo(QF)

and
o D%j ={ |_|/ Qg ;} for each (k,j) € If}i’*;
a€Z/t
+
° D?-tl ;= { |_| Qa,k+1,j} for each (k,]) c Isz B \ {(kiaj)}
! acZ/t

It follows from Lemma and Condition [7.6.14| that, if there exists (k,j’) € ny such that
ij/’Qi j’|C = 0, then we must have k, > k > k., 7/ = j and
k: 2
oot INea ~ F& +F#F&
k )
for some polynomial F' satisfying F’ (Fgﬁ)*1 € ((’)?SA), which implies that
+ -t Qb 0ty
F& e~ (FE(FE) ™) le = — (FE(FE) ™) e € (OF).
Hence, we may assume from now on that f ;s o+ j,|c # 0 for each (k,j’) € ny. It follows from
k )

Lemma |7.6.20| and a simple variant of Lemma that ffgi € Inv(C) and

FE) e ~ (FE + S TT ()

a€Z/t
where
A | B D DR (el
Qerf(Qt) \$'€D(ag,j)
and
OF a def Qa il 5 Qak,jr 02,k4+1,5\—1
Fe 7= F 11 I £ )

Sem(QF) \kens 1 \{k}}

for each a € Z/t. Here (2, ') € {1,0,—1} is a constant and (€2, Q') # 0 if and only if u;(iq/ 1) >
k.. Tt follows from Lemma Lemma and the fourth item in Condition [7.6.11f that

{ 1 ifae(Z/t);

FQiza —
Fi ifa e (z/t)*.

¢ =
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Since
N IR
a€(Z/t)*+ Qenf(Qt)
we have
(P& R+ FEMFE) e = ((FE + FENEE) ™) e~ (F8) e
with

Qt % +y— / _ S
(FEFEE = 1 S e, 9) (FEED ) e | € (0F).
QerF(Qt) \@'€D(ag )
Here (OF°) is the subring of O(C) generated by O (cf. the paragraph before Proposition [7.1.5)).
Q-1
As (f¢ )" |e € Oc, we conclude that

(FE) e~ (FE(FE) ™) e € (OF - 0c).

The rest of this section is devoted to the proof of Lemma

Lemma 7.6.18. Let QF be a constructible A-lift of type 111, and let (k,j) € ngy be an element
and a, a’ € Z/t be two distinct elements such that Qq 1 ; # 0 # Qo j. Assume that there does not

exist (o, j) € A such that both QF and Q= are pseudo A-decompositions of (o, 7). If ((i,7'),7) € A
for some i € IQa/,k’j and some i’ € I/Qa,k,j’ then there exists a pseudo A-decomposition ) of some
(o,4) € A such that (iar,0,J) € Iy, (Gae,,J) € I’ﬁ and Q C QT LU Q™. More precisely, there exist
e € {1,—1} such that one of the following holds

(1) QN2 =0,y CQ and i’ =igec, = la—ccy .;

(2) Q. CN, 0% NA=0andi= la/,0 = la/4¢,0;

(3) QuNQ=0=QyNQ, 7 =ige, =tarce, . aNd i =1g0=lg+e0;

(4) QaaQa’ - Q.

Proof. Tt follows from ((i,#'),5) € A, i € Io,, . andi € Iba’w that we have iy o <@ <’ <ig., and
((ia/,0,la,cq)s J) € A. Tt follows from Condition III that there exists a pseudo A-decomposition
Q of some (o, j) € A such that (iq,7) € Ig, (g, J) € Il@ and Q C Q1 LU Q™. Hence there exist
a1 € ZJ/t, e € {1,—1} and s; < #Q — 1 such that Tay,ca; = lascas Ba’,0 = lag—s1e,0 and
|_| Qal—s’e c Q.
0<s'<s1
It follows from Tay,ca; = la,co A0 G/ 0 = la;—s,,0 that exactly one of the following holds

e a=a;+cand d =a — si¢;
e ay =aand d =a; — (s1+ 1)g;
ea=aj+ecand d =a; — (s1 4+ 1)g;
e a; =a and a = a; — s1€.

It is clear that these four cases correspond to the four cases in the statement of the lemma. The

equalities involving i and 4’ follow from the fact that (,) and (', ) should lie in the same A"-
interval of Q% thanks to Condition III (|

The four cases listed in Lemma [7.6.18| can be visualized in Figure
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Lemma 7.6.19. Let QF be constructible A-lift of type 111 with Q% LU Q™ being circular (cf. the
paragraph before Definition W Let j € J be the unique embedding such that QT LIQ™ C Suppg ;-
Then there do not exist two different elements k, k' € n such that

(1) Ot = |_| Qa,k,j and 0~ = |_| Qa,k’,j;
a€Z/t a€Z/t
(2) k <min{kgc,—1|a € (Z/t)"} and k' < min{kyc,—1 | a € (Z/t)T}.

Proof. We assume without loss of generality that k > £’. Tt follows from Lemmathat kaco—1 >
kax >k > K, (vesp. kac,—1 > kax > K > ki, ,) for each a € (Z/t)" (resp. for each a € (Z/t)7).
In particular, we have k¥’ < k < min{kq,—1|a € Z/t}.

We choose an arbitrary a € (Z/t)” and note that a — 1 € (Z/t)* with kg, = kg—1,c, ,- Our
assumption together with Condition III implies that Q1 =0, Qo145 = Qa—1, Qo j = Qo
and Q,_14; = 0. Hence, we deduce that kf | >k > max{k?_,, k} and min{k’_,, ki} > K > kb.
If k% | < k&, then for each k¥ € n satisfying ki > k” > k> |, we have

K<k _| <k <k <k<min{kye,1]|acZ/t}

and Qq_1 57 ; # 0 # Qq 17 j, which contradicts Lemmam Therefore we must have szl > k:g >
ka,co = ka—1,c,_,, and thus the fixed —1-tour of vgf_uﬂ_ contains a —1-jump that covers kq.c, .

If there exists a € (Z/t)~ such that the fixed —1-tour of vgfug, contains a —1-jump at kg c,—1
that covers k, ,, then we have k‘Zq = kagco—1 >k > szl which is a contradiction. Consequently,
for each a € (Z/t)~, there exists a unique choice of aj,as € (Z/t)~ such that the fixed —1-tour
of vgfug, contains a —1-jump at k;, that covers k,,, and moreover satisfies (vgfm,)—l(k{“) €

n2 7\ {kq, 0} In particular, we have &, < (vgfug,)*l(kf“) < k. However, if we consider all —1-

jumps contained in the fixed —1-tour of vgfuﬂ_, we obtain a sequence of elements a1, as,...,as €
(Z/t)~ satisfying k|, <k, <--- <k < ki, , which is a contradiction. In all, we have shown that
such k and k&’ do not exist. O

Lemma 7.6.20. Let QF be a constructible A-lift of type 111 which satisfies Condition . Then
exactly one of the following two possibilities holds:

o OF satisfies Condition [7.6.10;
e upon replacing OF with its inverse (cf. Deﬁm’tz’on without changing v?i, OF satisfies
Condition |7.6.11].

Proof. We fix a pair (k,j) € ny and an arbitrary element Qi ;€ ng throughout the proof.
We choose two non-empty subsets

Q€ || Qupyand @, CQF

a€Z/t
such that
(7.6.21) dp=> 8
ﬁGQﬁ BeQ,

and there does not exist proper non-empty subsets of €3 and (), satisfying the similar equality.
According to (7.6.21]) and the minimality condition on €2y and 2, there exist s > 1 and an ordering

Q; = {(0g,0.0)}wezys and an ordering G, = {(a,.)}vez/s such that &, = i

¥ oy and fay, ) =



MODULI OF FONTAINE-LAFFAILLE MODULES AND MOD-p LOCAL-GLOBAL COMPATIBILITY 119

iau o1 for each s’ € Z/s. In particular, we observe that

(7.6.22) (g yry10 e, )2 0) €A

for each s’ € Z/s. We have the decompositions

Qﬁ = |_| Qﬂ,s’ and Qb = |_| Qb,s’

s'€L/s ENE
that satisfy
Z B = ay ¢ and Z B=a,y
(B.3)€Qy o (B7)€Q, o

for each s’ € Z/s. Moreover, we observe that the sets {i&’i s,,i’an S,} are disjoint for different choices
of s € Z/s and we have (cf. Definition [5.1.7)

Aﬂu = AQb = |_| {(iaﬁyslvj)v (i;ﬁysnj)}'
s'€L/s
It follows from Q4 C | ] Qg ; that, for each s’ € Z/s, there exists a unique a € Z/t such that
a€Z/t
Vo C Qqp; # 0, and thus we have a well-defined map ¢ : Z/s — Z/t. If s = 1, we say that the
pair €y, €, is simple.

If Q,Q, is simple, then there exist a € Z/t and (a, j) € A (with j = j,) such that Q C Qe j
and 4, € D(, ;) o- Using the minimality condition (under inclusion of subsets) on the choice of
04,9, we observe that either Qy = Q, = {(a, j)} or 4NQ, = 0. If QNQ, = 0 and 3], # i;,k,j’ this
contradicts the fact that €,y ; is A-exceptional (cf. item of Lemma . If Ny, =0 and
i, =1 we clearly have iq, , .1 =iq,1 # io,1 (which implies u;(iq, 1) < u;(i,1) = u;(ia,, ;1)
max A), and thus contradicts (7.6.3). Consequently, we have shown that, if the

a'7k7j7
using €, 5 j = QT4
(o % 00)s

pair €24, €2, is simple, then we must have Q4 = €Q,.
Now we treat a pair y, 2, which is not simple, namely s > 2 and thus s’ —1 # s’ # s’ + 1 for
each s € Z/s. Tt follows from Lemma that the element should fall into one out of
four cases there, for each s’ € Z/s. In the following, when we say case case case or
case we are always referring to Lemma
If there exists s’ € Z/s such that the element 1) falls into case then i/%,s/ = ig(s)

and there exists a pseudo A-decomposition €2, o 41 of ((i,i¢(sl)

Co(s)
j) for some i such that

Co(s)
Qp(sr41) € Qw41 € QT LUQT and Q) N Qo 41 = 0. Note that we have igms,ﬂ z"%sl =
z'd)(s/),%(s,). The inclusions Q4 o1 C Qg(sr41) C Qi ¢ 541 imply that
(7623) ((i;u,sfﬂ ) i¢(s’),c¢(sz) )a ]) €A
If ((iaﬁ,s/+27ig‘u,5/+1)’j) € A falls into either case|(1)| or case then (i, s/+1’j) and (iqﬁ(S’),%(S/)’j)
do not lie in the same A -interval, which together with Condition I11{(vii)| and (7.6.23)) leads to a
contradiction. Hence, the element ((ia, ., i;ﬁ g,+1),j) € A falls into either case|(2)|or case|(4)

If there exists s’ € Z/s such that the element ([7.6.22)) falls into case then ia, , = igw11)0
and there exists a pseudo A-decomposition Q, o 11 of ((ig(s+1),0,7),J) for some ' such that
Qy(sr) € Qo1 € QT LA™ and Qyginy N Qw1 = 0. We can argue similarly using Con-
dition III§(vii)| and deduce that the element ((iq, S,,z”oéu ,_,):J) € A falls into either case |(1)| or

case
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If there exists s’ € Z/s such that the element ((7.6.22)) falls into case then there exists a pseudo
A-decomposition 2 ¢ 11 of some ((i,i’), j) such that Qy(ey, Q1) € Qw41 S QT LQT. In
particular, we have

((iay »1),0), ((isa, ) 5) €A

Similar argument as above using Condition IIl4(vii) implies that the element ((i, ,, Z.Iaﬁ,s/—l)7 j) €A

falls into case |(1) or case |[(4), and the element ((Z‘%,swz’ilozu,slﬂ)’j) € A falls into either case m

or case Moreover, using previous two paragraphs, we obtain a unique choice of t,,t_ >
1 such that (( il ),j) € A falls into case for each —t_ +1 < /' < t; — 1,

iaﬁ,s’+t/+1’ .aﬁ,s/+t’
((i%,sut,+1’i/ozﬁ,sz,t_ ),7) € A falls into case|(1)| and ((iau,s/+t++1’ilOén,s/+t+>’j) € A falls into case

Combining the three paragraphs above, we conclude that, if there exists s’ € Z/s such that the
element ((7.6.22)) does not fall into case then there exist s,s5 € Z/s and ¢’ > 1 such that

sh=s)+t, ((iaﬂvs,ﬁl,i’%si),j) € A falls into case [(1) ((i%s,ﬁl,i’%sé),j) € A falls into case [(2)
and ((

. ./ . > . // I .
Z"‘u,s'1+t”+1’Z%,s/ﬁt//)’j) € A falls into case|(4)|for each 1 < ¢” < ¢ —1. More precisely, we have

./ . . .
(7.6.24) lan,s’l T (s ey Posyn T e(sh+1),0
and € ¢y o 1441 18 & pseudo A-decomposition of some root that satisfies
Q¢ 41 C© QTUQT is a pseudo A-decomposition of ((i,i¢(s/1),c¢(s,1)),j) for some i and
Qo(s141) € Dl 8,413
® Q gy ey ©QTUQ s a pseudo A-decomposition of ((ig(s 141y,0,'),7) for some ¢
and Q¢>(s’1+t/) C Q*,s’1+t/,s/1+t/+1§
o foreach 1 <" <t —1,Q, y g ypy1 C QT UQ™ is a pseudo A-decomposition (of some
root) that contains Qg ) and Qs 44711)-

This forces
def

Q*,s’l,s’Q—H = U Q*,5’1-l—t”,s’l—i-t”—‘,-l
OSt”St/

to be a pseudo A-decomposition of ((i¢(s/2+1)70,i¢(5/1),c¢< ,)),j) € A which is also a AP-interval of
%1

OF. As Q5 1s a A-decomposition of ((iaﬁ il ),7) € A with uj(iq, , 1) > k, we deduce that
»S ,517

[+ % s
kj < u '(’iQn)ax 1) < u '(’[:Qmax 1)
— % . ./ . ) — i i )N ?
((zanys/1+l,zauys/1),j),A (( ¢(s/2+1),0’ ¢<5/1)7C¢(5/1)) 7). A
which together with k¢(511+1)’0 Z k > k¢(8/1+1),c¢(s/1+1) (aS @ ;’é Qﬁ,Sll'i‘l g Q¢(8/1+1),k‘,j) and Condi-
tion [7.6.8] forces that
(7.6.25) 1‘75(5'1“)7%@'1“) = z¢(8/1)7c¢(3,1) and k < uj(lg*,s/l,s/2+1’1)'

However, as we have (using ((7.6.25) and (7.6.24))
./ o . .
Zau,sfl = Yo(sy) kg = Z¢(5'1)vc¢<5'1) - Z¢’(5'1+1)vc¢(5’1+1)

and
k< uj(iQ*,sll,S,Q-H?l) = k¢(8'1+1)»6¢(s’1+1)_1’
we necessarily have Qg 11)x,; = 0 by Lemma which contradicts the fact that 0 # Qy o 1 C

Qs +1) k.5
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Up to this stage, we have just shown for each s’ € Z/s that, the element ((7.6.22) falls into case
in Lemma |7.6.18] and thus z"%s, = i¢(5/)7c¢(s,), i%,s,+1 = ig(s'+1),0 and € o is a A-decomposition of

Oy s = ((iqﬁ(s’—i-l),O)Z.qﬁ(s’),c(b(s/))?j) €A
satisfying u;(iq, ,,1) > k. Consequently, for each s’ € Z/s, we have

o (yisa AP-interval of OF;
e there exists a A7-interval of QF which is a pseudo A-decomposition of (a5 9);
° Qb,s’ € D(ab,s’uj)vA and k < uj(iﬂb,s“l) < uj(iﬂmax 1).

(Qbysl,]')vA’

Upon replacing QF with its inverse (cf. Definition [5.1.7), we may assume that Q; C Q= by the
discussion above, and note that

e ¢ is injective, ¢(Z/s) = (Z/t)~ and Qy = Q7;

® oy = J and Qy v = Qy(y 5 = Qg(sr) for each s’ € Z/s;

e for each A-interval Q € 75/(Q7F), there exists a unique s’ € Z/s such that Q is a pseudo

A-decomposition of (o, ¢, 7).
For each a € (Z/t)” = ¢(Z/s), as Qg j = 4, we deduce from Lemma that
kas > k> k.

On the other hand, as we have

(7626) k’ S uj(in,s”l) S U,j(iQmax 1)

(0 7 ,)A”
for each s’ € Z/s, we deduce from Conditionthat k <kqe, and Qg ; = 0 for each a € (Z/t)*
such that k¢, # kac, for all ' € (Z/t)”. Assume for the moment that there exist s’ € Z/s
and a € (Z/t)* such that ig., = ig(s)cpry = tatlicars 8Dd Qapj 7# 0, then we clearly have
kao > k > kqpc,. It follows from Condition |7.6.8| that either ¢, = 1 or uj(igznax 1) = kaca—1,

%,s”j)"\’

which together with (7.6.26) and k.0 > k > kq,c, implies that k < k, ., —1, Hence, we deduce from
. = oo o s .

k<kqco—1, () hej = L)ty = lasca and Lemma that Q4 1 ; = 0, which is a contradiction.

We conclude Q1 ; = 0 for each a € (Z/t)* in the current situation.

Now we return to our fixed (k,j) and the associated set Dg? If all possible choices of pairs

OE
k.j>

pair, and we can write || Qg ; (resp. Qi ;) as disjoint unions of € (resp. ;) for certain choices
a€Z/t ’
of pairs €, (), and deduce that Qi,j = U Qak,;-
a€Z/t
It remains to consider the case when there exists one choice of Qi ; € ng with Q,uw #+ |_Z|/tQa’ kjs
ac
namely there exists a non-simple pair €, {2, satisfying Q3 C || Qg1 ; and Q, C Qi I According
a€Z/t ’
to our previous discussion, upon replacing QF with its inverse, we have
e O L™ C Suppg ;;
[} Qﬂ = Q_ = I_l Qa7k7j§
a€Z/t
® kas >k > kg, for each a € (Z/t)7;
e for each A -interval Q € w5 (QF), there exists (aq,j) € A such that Q is a pseudo A-
decomposition of (agq, j);

(4, €2, are simple for each choice of Q,ug ; € D then we always have )y = , for each choice of
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e there exists QE) k. € Dy A with u;(is ) >k for each Q € T5(Q), such that

aQ)j)v .k,

Qﬁw, =0,= || QEZ,H
Qerfl(Q+)

We recall the definition of k, and £} from ((7.6.12)) and (7.6.13)) respectively. Then it follows from
previous discussion and Lemma [7.6.19| that the following conditions on k' € n are equivalent (for
the above choice of Q%)

o k> K >k
o #D > 2

[} |_| Qa,k/,j =~ and k’l S Uj(in(nax )
a€Z/t BT

) for each Q € 75/ (QF).

e

Finally, we conclude the following

e If all possible choices of the pair Q,2, for all (k,j) € nys are simple, then OF satisfies
Condition [7.6.101

o If there exists some (k, j) € ns and a choice of €y, 2, which are not simple, we can decide
to choose Q% or its inverse from this pair Q,Q, and then define k,, k, € n as above. The
very existence of such (k, j) ensures that k, > k.. The rest of properties satisfied by the
pair {4, 2, implies that either OF or its inverse satisfies Condition

The proof is thus finished. O

Lemma 7.6.27. Let QF be a constructible A-lift of type 111 with both Qt and Q= being pseudo
A-decomposition of some (a,j) € A. Then QF satisfies Condition 7.6.10,

Proof. We borrow all notation around €24, €}, from the proof of Lemma and prove that all
possible choices of pairs €24, {2, are simple, which is enough to conclude the result by the discussion
in the proof of Lemma

If §(Z/s) C (Z/t)" or ¢(Z/s) C (Z/t)~, we choose s’ € Z/s such that the integer 1 < m < r¢
satisfying i, o € [m]¢ is minimal possible and uj(igtﬁys,) is maximal possible for the fixed choice
of ¢(s’). Then we deduce from ((iaﬁ’s,ﬂ,ign’s,),j) € A that ¢(s’ + 1) = ¢(s') (by minimality of m)
and thus u;(ia, ,,,) > uj(i’awﬂ) > uj (i;u,sf) (as we have either s = 1 or Qy ¢ NQy g1 = 0), which
together with maximality of u; (z’ajj /) implies s = 1.

’

Assume for the moment that ¢(Z/s) N (Z/t)T # 0 # ¢(Z/s) N (Z/t)~ and s > 2. We choose
sh,sh € Z/s such that ¢(s)), d(sh+1) € (Z/t)* and ¢(s| + 1), d(sh) € (Z/t)~. For each i = 1,2, we

.y , - ” : . . g
deduce from (( ir, ,),7) € A and Condition III{(vii)| that either lay yy = la OF g, , =1

)
(e} I ) *
fosi 17 sl 55 ¢

, / . . -/ -/
As we clearly have s| # s5, we deduce that lay g4 #* lay g and o, . #* o, a Hence, we may

assume without loss of generality that i, = 1o and i;u ,
155

= i/,, which implies that fay # i for
=1/, also forces ¢(sh —1) € (Z/t)T,

#,87+1
/ / 4 -/ / / -/
each s’ # 5| +1 and Gy o # iy, for each s’ # s;,. However o,

/
52

which together with ((ia, , 0! ),4) € A, Condition ITI{(vii)| and i;ﬁ ,_, # iy forces lay , = la
59 18— »So

aﬁ,séfl

and thus ay ¢ = a. This is impossible as Q£ {(a,4)}.
Up to this stage, we have shown that, if both Q7 and Q~ are pseudo A-decompositions of some
(a, j) € A, then all possible choices of pairs €4, ), are simple. The proof is thus finished ]
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Let QF be a constructible A-lift of type III satisfying Condition Assume for the mo-
ment that QF fails Condition namely there exist kY, Q and k* as described right after
Condition [Z.6.11l Then we observe that

o uj(ify) < wilira) = K] < ku < uyliages 1) < wj(iag) and k* ¢ {u;(iag), (i)}
e it follows from Condition III and (k’*’,j) €](k*,5), (k*,j)]w, that there exists a* €
(Z/t)¥; such that Qg+ C Q, and k* € (0 \ {kar o0 }) U {kar 0}

Hence, we can define a new balanced pair QF by
(7.6.28) Q7 £ Q7 and OF = (QF\ Q) U (w5 (k]), i), )} U Q"

where " C €2 is the unique subset which makes {((u; Y(KY), ik, ), 7)1UQ" a pseudo A-decomposition
of (ag, 7). Note that we have

(7.6.29) O C O\ {((in1:704): )} S (A2 0)4

as QF satisfies Condition [7.6.8] It is clear that we always have F (FQi) le Ogsj\. If QF is a
constructible A-lift of type ITI, we set t, & #(QF L), indexed Qj LIS by Z/t,, and then define
Yo € m(QF) and a, € (Z/to)s, BY Gag.cay = fao—1,cag1 = fag- As Ky is the —1-end of ¥, and & <
ke < ko <kge,—1=F _1 for the unique a € (Z/t)_ satisfying iq.c, = ta—1.cq_, = i

> 0o,Cag aqg?

we can

and do choose vgo such that the fixed 1-tour of (vE )~ 1\n2 contains a 1-jump at &} = ka,—1,.¢,, -1
(using the construction in Proposmon “ If moreover QF satisfies Condition [7.6.11] we define

kO*andk: so that #D : > 2 if and only 1fk<>*2k>k:g*

Lemma 7.6.30. Let QF be a constructible A- lzft of type 111 which satisfies Condztzonm As-
sume moreover that k! exists as above. IfF g ¢ (’) O;kﬁ | then exactly one of the following

holds:

e OF is a constructible A-lift of type 111 that satisfies Condition [7.6.10;
o OF is a constructible A-lift of type 111 that satisfies Condition |7.6.11| and kf%* > k.

Proof. We keep the notation Q, k*, ¥, and a, attached to k” as above. It is clear that |QF| =

|QF|. If QF is not a A-lift, we clearly have F, F% ¢ (’)<|Q by Lemma [5.1.2, If QF is a A-
lift that violates Condition IH-m, I1{(v)] HI ITI{(viii)| or ITI{(ix), then we clearly have

FgQ ° € Ops (’)5< kQ | by the same argument as in the proof of Theorem [5.3.20L Otherwise, QF

automatlcally satisfies Condition ITI4(i)| HI-“, HI and III{(vi)} and thus is a constructible

A-lift of type III. It is also clear that 2 automatlcally satlsﬁes Condition _ 7.6.8| by its construction
. " o +

(using k] < u; (m?;ag’j)’ml) and (|7.6.29 ) If QF satisfies Condition |7.6.10}, we have nothing to prove.

Otherwise, OF satisfies Condition 7.6.11| (using the fact that the inverse of QF can never satisfy
Condition 7 6.11fas {((u; Yk, i it )s )}I_IQ” is not a A-decomposition of (aq, 5)). As we have chosen

:|:
vj such that the fixed 1-tour of (vZ )~ 1|nzo contains a 1-jump at k) = ke, 10 = Kag—1,c0, 11
(which necessarily covers kq, c,, ), we deduce that ki, > kj_ , > k), = k! > K. The proof is thus
finished. O
Lemma 7.6.31. Let QF be a constructible A-lift of type 111 whzch satisfies Condition . Then

there exists a constructible A-lift Qi of type 111 such that F (Fﬂi) € OpA and at least one of
the following holds
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ot +
o F,0 e O, - 0h
° Qég satisfies Condition |7.6.10;
° Q% satisfies Condition |7.6.14)

+
Proof. 1t suffices to treat the case when ng ¢ Oy - O?kﬂ || 0F satisfies Condition [7.6.11| and

moreover k7 exists, as otherwise we can always set Qi Lf o+, Hence, we can define a new

balanced pair QF as in (7.6.28)) which satisfies F (F Qj[) e Ogs}\. Note that QF is necessarily
+

a constructible A-lift of type III satisfying Condition |7.6.8| as FQi ¢ (’)ps O g QF satisfies

f’A
Condition [7.6.10, we set €, QF. Otherwise, it follows from Lemma [7.6.30 that QF satisfies

Condition [7.6.11| with & , > k.. We can repeat the construction QF — QF and carry on an

induction on £}. The induction must end and as Fy o ¢ (’) O? J\Q |, we must arrive a constructible

+ def

A-lift Qi of type IIT which satisfies F (F 2F)-1 ¢ (’)p and falls into the second or third possibility

in the statement of this lemma. The proof is thus ﬁmshed O
Proof of Lemma[7.6.16. This follows directly from Lemmal[7.6.9, Lemma|[7.6.20] Lemma [7.6.27 and
Lemma [7.6.31] O

7.7. Main results on invariant functions: proof. In this section, we combine results from
§ and § to prove our main results on invariant functions, namely Theorem and Corol-
lary In particular, this completes the proof of Statement

We fix a C € Py satisfying C C N¢ 5 as usual. In the following, we introduce a list of subgroups
of O(C)* to be used afterwards. Given a set S of balanced pairs, we can define the subgroup of
O(C)* associated with S by the subgroup generated by OF and F, Eﬂi | for all balanced pairs Q% in
S.

We recall from Proposition that Op” is the subgroup of O(C)* associated with the set of
balanced pairs QF with both QF and Q= being pseudo A-decompositions of some (a, j) € A. For
each v € AU, we write OES’HM C O’ for the subgroup associated with the set of all balanced pair
QF such that both QF and Q~ are pseudo A-decompositions of some (a,j) € AN Suppg 7 with
QF % {(o, )} # QO (cf. Proposition [5.3.16)).

We write OF™" C O™ (resp. O = C OF") for the subgroup associated with the set of all
constructible A lifts QF of type 1 (resp. of 1 type II) with Q" being A-extremal.

We say that a balanced pair QF is of type I-max (cf. Lemma if there exists («,j) € A
such that

e ()7 = Q‘(nax) A 18 A-exceptional and A-ordinary;
o OF € D, j) satisfies ig+ = zw for some 1 < e < ey (with ¢ = (Q7, A)).

For each v € /AXD, we write Oé’max"y C O(C)* for the subgroup associated with the set of all balanced
pairs QF of type I-max with |QF| = v
We say that a balanced pair Q7 is of type II-max (cf. Proposition if there exists (a, j) € A
such that
e ()7 is a pseudo A-decomposition of («, j) satisfying O # {(a,7)};
e 0T € D(yj),a is A-ordinary;

e cither Q1 = Qr(rclya;‘) A OF Q71 is A-extremal.
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For each v € A”, we write QL™ C O(C)* for the subgroup associated with the set of all
balanced pairs QF of type Il-max with |QF| = ~.

We say that a balanced pair QF is of type I-exp (cf. Proposition [5.3.18)) if there exists (a, j) € A
such that

e ()7 = Qaa;‘) A is A-ordinary;

e Ot € D(q,),a is A-exceptional and A-ordinary.

+
For each balanced pair QF of type I-exp, we write Og < C O(C)* for the subgroup associated
with the set of all balanced pairs Qoi satisfying

. Qoi is of type I-exp;
e Oy =0 and OF < Q.

For each v € AT, we write Oé’eXp 7' C O(C)* for the subgroup associated with the set of all balanced
pairs QF of type I-exp with [QF| = 7.

We say that a balanced pair Q7 is of type II-exp (cf. Proposition|5.3.13)) if there exists (c, j) € A
such that

o Q7Y \ is not A-ordinary and Q7 = (QI(I&%?),A)T;

e OF ¢ D(4,j),a is A-exceptional and A-ordinary.

For each balanced pair QF of type II-exp, we write (’)g < C O(C)* for the subgroup associated
with the set of all balanced pairs Qoi satisfying
° QgE is of type Il-exp;
e Q) =0 and QT < Q.
For each v € A9, we write O™ C O(C)* for the subgroup associated with the set of all balanced
pairs QF of type Il-exp with |QF| = 7.
We recall the subring O¢ C O(C) from Definition [4.3.1] For each subset Y C O(C), we write

(Y')! for the subring of O(C) generated by Y, and write (Y') for the localization of (Y')’ with respect
to (Y)Y NnO(C)*.

Lemma 7.7.1. Let (a,j) € AN Suppgj be an element. If QF is a balanced pair such that

o O is a pseudo A-decomposition of (cv, ) with Q= # {(a, §)}:
o O is a pseudo A-decomposition of (v, j) with either QF # {(a,j)} or @ € D
not A-ordinary;

Then we have
+
F e € (057 - Oc).

In particular, we have (’)gs’m’7 C (037 - Oc).

Proof. If Q% € D(q,j),a 1s not A-ordinary, we can replace the balanced pair OF with Q?,Q*.

Consequently, we may assume without loss of generality that both Q" and Q~ are pseudo A-
decompositions of («, j) with QT # {(«a, )} # Q. Then it follows from Proposition [5.3.16| that
there exists a constructible A-lift Qat of type III such that

e both QF and € are pseudo A-decompositions of («, 5);
oF £._
° <F£O(F£Q ) 1) |c€0§'y.
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+ +
We deduce from Proposition|7.1.5(that ngo € O¢. The proof is thus finished by <F€Q° (ngi)_1> lc €
oz7. O
Lemma 7.7.2. We have

026){137 Oél,ext g OC.
Proof. This follows directly from Proposition [7.1.2] and Proposition [7.1.4] O

Lemma 7.7.3. If QF is a balanced pair of type I-max with |QF| = ~ for some v € /AXD, then we
have

+
F¥ e € (057 Oc).
Moreover, we have Oé’max’v C(OF7 - Oc).

Proof. We write (a,j) € AN Suppgj for the element such that O~ = Qma’.‘) A If Fgﬂi|c € (957,

(a,j

then we have nothing to prove. Otherwise, it follows from Lemma [5.3.15] that there exists a pseudo
A-decomposition Q' of (e, 7), which is A-equivalent to Q1 with level < ~, such that ig; = 2111121
(with ¥9 = (27, A)) and exactly one of the following holds:
e (e Do
o O # {(a,§)} and the balanced pair -, € is a constructible A-lift of type II.
We set

A and the balanced pair ', Q" is a constructible A-lift of type I;

TR, ) - e .

LR S I P
If ' € Dy )4 is A-extremal, then it follows from Proposition [7.1.2| that Fg‘ﬁc € O¢ and thus
Féﬂi lc € (OfY - Oc). If " € Dy 4y, is A-exceptional, then it follows from Proposition that
Fgﬂ(j’[\c + e € Oc for some € € {1,—1} and thus ng € (057 - Oc). If Q' # {(a,j)}, then it
follows from Proposition |7.1.3, Proposition |7.1.4] and Q(‘)F = Q?;&E'(),A that Fggatlc € O¢ and thus
F&|c € (OF7 - Oc). The proof is thus finished. O

Lemma 7.7.4. If QF is a balanced pair of type II-max with |QF| = ~ for some v € /A\D, then we
have

QF ps, I,y I,max,y <y
FE |o € (0p217 . 0k . 057 . 0c).
Moreover, we have Oél’max’w C (057 - Oc).

Proof. We write (o, j) € AN Suppgj for the element such that QF € D, jyA. If FgQi’C € 057,
then we have nothing to prove. Otherwise, it follows from Proposition [5.3.17] that there exists a
pseudo A-decomposition Q' of (, j) with Q' # {(a,5)} such that the balanced pair QF defined by

Qf L0+ and Qy L' () satisfies one of the following:

+
° F?O |c € Og'y;
° Qoi is a constructible A-lift of type II;

e there exists Q" € D(, ;) such that the balanced pair Q”, Q" satisfies the conditions in
def

Lemma [5.3.15( and FgQl lc € OS5 for the balanced pair defined by €0 and Qr = Q.
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+
It is clear that F§Q 2e € Ogs’m” for the balanced pair defined by QF 0 and Q5 L 0-

+
and there is nothing to prove if FgQ Olc € OC<7. If Qoi is a constructible A-lift of type II and

+
QF = Qf € D(q,j),a 18 A-extremal, then it follows from Proposition |7.1.4) that F; o lc € Oc
and thus Fggi\c e (O L OF7 - Oc). Tf QF is a constructible A-lift of type I1 and QfF =

Ot = Q?lax) A is A-exceptional, then it follows from Proposition [7.1.3) that F5 0 lc € O¢ and thus

+
Fgﬂi\c e (Op” MLy 037 - Oc). If such Q" exists, then we also have F£Qs lc € Oé’max’w for the
balanced pair Q3 defined by Qf L " and Q3 et Qf = QF = Qo) A+ Therefore we deduce

that Fy % lc € (’)I maxy (’)<7, which clearly implies the desired result on Fg o* lc. The last part is
1mmed1ate from Lemma [7.7.0] and Lemma [7.7.3] Hence, the proof is ﬁmshed O

Lemma 7.7.5. If Q% is a balanced pair of type I-exp with |QF| = ~ for some y € KD, then we have
+
O* ‘C c <Oé) < Ogs,IH,fy . O(I:,max,'y . Oél,max,y . Oc<'y . OC)

Proof. We write (a,j) € AN Suppgj for the element such that QF,Q~ € D, ;). According to
Proposition [5.3.18] there are four possibilities as follow:
+
o [ 59 |C S Oé K
e OF is a constructible A-lift of type I;

e there exists a pseudo A-decomposition € of («,j) such that the balanced pair QT
(resp. the balanced pair Q—,)') satisfies the conditions of Lemma |5.3.11| (resp. of Propo-

sition |5.3.17));
e there exists Q' € D(q,5),a such that the balanced pair ', Q™ satisfies the conditions of

L 2% <y Ot 4 def — def
emma [5.3.15( and F lc € Oy for the balanced pair Qf defined by 27 = € and Q5 =

Qr.
If FQjE lc € 057, then we have nothing to prove. If QF falls into the fourth case of Proposition[5.3.18
then we deduce that FQ lc € OI Y. o7,
Now we treat the Case when Qi falls into the second case of Proposition m It follows from
Proposition [7.1.1| that F£Q |c belongs to the subring of O(C) generated by O¢ and F ’ |c for all
balanced pairs Qiﬁ satisfying €2 = Q7, Qf € D(u,j ), and Ot < Q+. We choose an arbitrary

such Qf According to Lemma [5.2.12} it is harmless to consider only those Qiﬁ with Q] being
either A-exceptional or A-extremal. If Qf is not A-ordinary, then the balanced pair Q7 , (27 ); is

of type II-max, which implies that F y le € OH YL 037, If Qf is A-extremal and A-ordinary,

then it follows from the proof of Theorem 5.3.19| that either Qf is a constructible A-lift of type I
+ +
or Fgl lc € OF7, which together with Proposition [7.1.2] implies that FgQl lc € (037 Oc). If Qf is

+
A-exceptional and A-ordinary, then we clearly have F, - lc € (’)Q <. In all, we always have

1|C€<OQ ,< OHmax,'y O<’y OC)

when QF falls into the second case of Proposition [5.3.18
Finally, We treat the case when Q7 falls into the third case of Proposition m It is clear that

we have F : lc € OH AT for the balanced pair Q3 defined by Qyf L0~ and QQ_ oy Applying
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Lemma [5.3.11| to the balanced pair QT , €/, there exists a pseudo A-decomposition ©” of («, j) such
that

e cither O = QT or the balanced pair 27, Q" is a constructible A-lift of type II;
+

o F{"|c € O for the balanced pair defined by Qf Q" and Q5 ' ¢,
If Q" = QF, then we clearly have Fg’i\c € Og’max’v - OF". Therefore, we assume from now on
that the balanced pair fo defined by QI L O+ and Qy L0 is a constructible A-lift of type

+
II. It follows from Proposition [7.1.3| that F€Q *|c belongs to the subring of O(C) generated by O¢
+

and Fg"’ |c for all balanced pairs Q5i satisfying Qs = Qp, QF € D(q,j),a and QF < QF. We
choose an arbitrary such Qgt According to Lemma [5.2.12] it is harmless to consider only those Q?f
with Q; being either A-exceptional or A-extremal. If €7 is not A-ordinary, then we deduce from

+
Lemma [5.2.20| that FgQ5 lc € (OCpS’III"y -O57 - Oc). If QF is A-extremal and A-ordinary, then we

+
deduce from Proposition [5.3.17| together with Proposition |7.1.4] that F§Q5 e € (O 057 . O).
Finally, if Q; is A-exceptional and A-ordinary then we clearly have

FQi — FQi FQi +
which 1mphes that

Qgt OF < 1I,max,y <y

In all, we always have
+
Fggl |C c <O§i,< . Og,max,'y . Ogs,HI,'y . Oc<'y . OC>
when QF falls into the third case of Proposition [5.3.18] Hence, the proof is finished. ]

Lemma 7.7.6. If QF is a balanced pair of type Il-exp with |QF| = ~ for some v € [A\D, then we
have

+ OF 111
F& e € (0g = - 087 - 057 - Oc).

Proof. We write (o, j) € /A\ﬁSupng for the element such that Q* € D, ;) A. If ng lc € 057, then

we have nothing to prove. Otherwise, from Proposition[5.3.13|there exists a pseudo A-decomposition
Y of (a, j) such that

e the balanced pair 27, Q' is a constructible A-lift of type II;
+
o F£Q° lc € OF” for the balanced pair QF defined by QF L' and Qo Lo

+
If we let Qf L0+ and Q7 def Q. then it follows from Proposition [7.1.3| that FéQl |c belongs to

+
the subring of O(C) generated by O¢ and FgQ 2 |¢ for all balanced pairs Q;t satisfying 2, = Q,
Of € D(q,j),a and Qf < QF. We choose an arbitrary such Qét According to Lemma [5.2.12] it
is harmless to consider only those QQi with QF being either A-exceptional or A-extremal. If 2 is

+
not A-ordinary then we deduce from Lemma |5.2.20| that Fg% lc € <O§S’IH’7 SO57 - Oc). If QF is
A-extremal and A-ordinary then we deduce from Proposition together with Proposition

+
that FgQ 2|c € <(9§S’HI’7 : OC<'Y - Oc). Finally, if QF is A-exceptional and A-ordinary then we clearly
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have

+ + +

(Fgo F£92> e € Oé} <,

which implies that

= +

F? e e 0F =05,
In all, we always have
+ +
FM e e (0= o 057 - 0c).

Hence, the proof is finished. O

Proposition 7.7.7. We have
Op° C Oc.

Proof. Let QF be a balanced pair with both QF and Q= pseudo A-decompositions of (a,j) €

AN Suppg 7- We argue by induction on 7 and thus can assume that Oév C O¢. It follows
immediately from Lemma Lemma and Lemma [7.7.4] that we have

ps,IIL,y I,max,y II,max,y

Consequently, if QF is of type I-exp (resp. of type II-exp) for some (o, j) € AN Suppg 7> it follows
from Lemma (resp. Lemma|7.7.6)) and an induction on the partial order < on the set D, j) A

that Fgﬂi lc € O¢. In particular, we have
Oé,eXpn’ Oél,eXpw C Op.

Now we return to a general QF with both QF and Q= pseudo A-decompositions of (a,j) €
AN Suppg 7+ A crucial observation from the proof of Theorem |5.3.19| (upon restriction to C) is that

QF ps,III, I,max, II,max, Lexp, I1,exp, Lext II,ext <

which together with Lemma and previous discussion clearly implies that F, SQi lc € Oc. The
proof is thus finished. L

Theorem 7.7.8. For each A-lift QF, we have
+
F, 59 ’c € Oc.
Proof. If there exists (o, j) € A such that both QF and Q~ are pseudo A-decompositions of (a, j),
then we clearly have ng\c € O¢ thanks to Proposition According to the proof Theo-

rem [5.3.20], it suffices to treat the case when Q7 is a constructible A-lift of type III. Then it follows
from Proposition that

+
Fggi|c e (0% - 051" 00),
which together with Proposition and an induction on |QF| finishes the proof. O
Corollary 7.7.9. Statement|4.1.11| is true for each C € P.

Proof. This follows directly from Lemma and Theorem O
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8. ﬁj, 151] AND SERRE WEIGHTS

In this section we compare the Fontaine-Laffaille moduli space with moduli of Breuil-Kisin
modules with tame descent data, inside the Emerton—Gee stack, and interpret the partition P on

FL 7 using shapes and obvious weights. We extensively use the theory of local models introduced
in [LLHLMal Sections 4 and 5].

We recall the notion of alcoves, admissible set and certain subsets in the extended affine Weyl

group for G. Only in this section, we omit the subscript J from the notation of elements of W or W
for simplicity. An alcove is a connected component of the complement X*(T)®zR \ (U( ) H a,n)

where we write Hy, & {u: {u,aV) = n} for the root hyperplane associated to (a,n) € @ x Z.

We say that an alcove A is restricted (resp. dominant) if 0 < (u, ") < 1 (resp. (u, ") > 0) for
all simple roots @« € A and p € A. If Ay C X*(T) ®z R is the alcove defined by the condition
0 < {u, ") < 1 for all positive roots a € &, we let

E+ & {w € W | w(A4y) is dominant}

and

+ def ( . .

W, ={we W | w(A) is restricted}.
Note that € X*(T) N (pAy) if and only if p is 0-generic Fontaine-Laffaille (cf. Definition
We fix an injection W — W Whose composition with the surjection W — W is the 1dent1ty map.
We also write wy, = (wp;) € W1 for the element wot_,,.

The alcove AO defines a Bruhat order on W, denoted by <. By letting Q2 denote the stabilizer of
AO, we have W W, »x and so W inherits a Bruhat order as well: for wy,wy € W, and w € €2,
wiw < wow if and only if w; < w9, and elements in different right W -cosets are 1ncomparable
We extend the Coxeter length function ¢ on W, to W by setting £(w¢) Eyw) ifw e w,, 6eq.
If A\ € X*(T) we define

Adm(A) o {@ eW | w < ty,(n) for some w € E} .

def

We define an involution @ — @* of W by ((wty)*); = t,,]w . This involution does not preserve

J

— —~vV

the Bruhat order on W fixed above. Note that [LLHL, Definition 2.1.2] writes W for the group

W equipped with the Bruhat order defined by the antidominant base alcove, which makes w — w*
/\_/\/ —~

an order preserving, involutive anti-isomorphism between W and W.

8.1. Serre weights and Galois representations. In this section, we recall some background
on Serre weights together with their relation to the Emerton—Gee stack. Then we use the notion
specialization to define the set of obvious weights for Fontaine—Laffaille Galois representations (see

equation (8.1.6)).

An absolutely irreducible F-representation of GL,, (k) will be called a Serre weight. The set X;(T)
of p-restricted dominant weights is defined as

X1(T):={pe X(T)|0< (u,a)y <p—1forala’ecA"}
and by |[GHSI8, Lemma 9.2.4]) we have a bijection
X(T)/(p—m)X(T) = {Serre Weights}/N
(8.1.1) p+ (p—m)XT) — F(p)
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Given an integer m > 0, we say that a Serre weight F' is m-generic Fontaine—Laffaille if F = F(u)
with p + 7 € X*(I) being m-generic Fontaine-Laffaille (cf. Definition 2.1.1)). Note that this
condition implies 1 € X1(T') and does not depend on the class of  modulo (p — 7)X°(T).

Definition 8.1.2 ([LLHLMa], § 2.2). A lowest alcove presentation for a Serre weight V is an

equivalence class of pairs (wq,w), where w; € Ef and w € X*(T) is a 0-generic Fontaine-Laffaille
weight (with equivalence relation (w1, w) ~ (t,w1,w — v) for v € X9(T)) such that
~ def
V = Flgyw = F(r™ (@) - (w—n)).
We say that a lowest alcove presentation (wp,w) of a Serre weight Fl@, w) 18 compatible with an

algebraic central character ¢ € X*(Z) if t,—,w1 W, corresponds to ¢ via the isomorphism E/m =
X*(2).

We let A, denote the Noetherian formal algebraic stack over SpfO defined in [EG] Definition
3.2.1]. Its restriction to a complete local Noetherian O-algebra R with finite residue field is equiv-
alent to the groupoid of continuous G i-representations over rank n projective R-modules. In [EG],
Theorem 6.5.1] the authors establish a bijection between Serre weights and the irreducible compo-
nents of &), ;cq, the latter denoting the reduced structure underlying the special fibre of &,. For a
Serre weight V' we define Cy as the irreducible component of &, ;eq corresponding via [EGl Theorem
6.5.1] to the Serre weight V'V ® det™ !, This is compatible with [LLHLMal, § 7.4].

Let p: Gxg — GL,(FF) be a continuous Galois representation which we consider as an F-point in
| X (F)]. We define

def

Wi(p) = {V | p € [Cv(IF)]}.
If 7 is a tame inertial F-type such that [7] has a lowest alcove presentation (s, ) where p+ 7 is

n-generic Fontaine-Laffaille, we have a set of Serre weights W’ (T) associated with it as in [GHSIS|,
Definition 9.2.5] (cf. [LLHL, Definition 2.2.11]).

Let A € X7 (T') be a dominant weight with A + 7 being Fontaine-Laffaille (cf. Definition
Recall from § the scheme FL; = U\G. We have a formally smooth morphism FL; — B\G
which makes .7-"5 7 a T-torsor over B\G. The T-action on G induced by right multlphcatlon
descends to a T-action on fﬁj and on B\G. Let x € fﬁj( ) be an element such that p, \,, = p
and write Z for its image in B\G(F). A specialization p°P of p is a tame inertial F-type which
corresponds to a T-fixed point in the Zariski closure of T -71. We write p ~» p°P to mean that p°P
is a specialization of p.

We can characterize the representations p which have a given specialization.

Lemma 8.1.3. Let 2 € FL 4 (F) be a point and w € W be an element. Then Pein ~ T(w™ A4n)
if and only if x € My (FF).

Proof. According to Lemma it suffices to show that, given 7 € B\G(F), the Zariski closure
of - T(F) contains B\Bw if and only if T € B\ BwyBwow. As the complement of B\ BwyBwyw is
Zariski closed in B\G and does not contain B\Bw, we just need to show that the Zariski closure
of B\BwoAwowI = B\BwyATwow contains B\ Bw, for each A = (A(j))jej € U(F). We consider
the morphism

(8.1.4) Gm - BCG: x+ Diag(z"',...,z,1)- A-Diag(z™"™, ..., 271 1)

which clearly extends to a morphism A! — G that contains 1 in the image. This implies that
B\Buw is in the Zariski closure of B\ BwoATwow and the proof is finished. O
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Remark 8.1.5. As each C € Py is stable under both left and right T-multiplication, the proof of
Lemma also shows that C C M7 if and only if the Zariski closure C of C contains M,,, which

is the fiber of L7 — B\G over w. In particular, for each x € C(F), we have
{7 | Papgn = PP} = {T(w™ ", X+ ) | My € C}
If 7 is a tame inertial F-type such that [7| has a lowest alcove presentation (s, ) where p+ 7
is n-generic Fontaine-Laffaille, we have a subset Wy, (7) € W (7) defined in [GHSIS, Definition

7.1.3] (see also [LLHLMal, Definition 2.6.3]). The choice of the lowest alcove presentation (s, y) of
7 gives a bijection W — Wopy(T) defined by w = F(g g(=)a-1(0)) Where w in the image of w under

our fixed injection W — E;r When the lowest alcove presentation of 7 is understood, the image of
w € W via this bijection will be denoted by V7, and called the obvious weight of 7 corresponding
to w.

Let A 4+ n be n-generic Fontaine-Laffaille. Let p : Gx — GL,(F) be a continuous Galois repre-
sentation satisfying p = p, y,, for some z € FL 7(F) (and thus p is n-generic, cf. Definition .
Then for each specialization p*P of p, there exists w € W such that p°° = 7(w™!, A +7), and thus
Woby (p°P) is defined. We define the set W,y (5 ) of obvious weights of p as follows:

(8.1.6) Wore () = WOE) N | Wobe (7).

p~pP
8.2. Local models for the Emerton—Gee stacks and its components. In this section, we
recall some results on the local models of [LLHLMal, Sections 4 and 5], and describe how the moduli
of Fontaine—Laffaille modules fit into the theory (Propositions |8.2.4] and |8 -

We fix a (3n — 1)-generic Fontaine-Laffaille weight A+n € X *( ). Since all schemes are defined
over Spec ' we omit the subscript ep from the notation when considering the base change to F of
an object o defined over O (e.g. GL, r will be denoted by GL,, and so on). This shall cause no
confusion.

We write LGL,, for the loop group on Noetherian F-algebras R — GL,(R((v))) and Z (resp. Z1)
for its Iwahori (resp. pro-v Iwahori) subgroup

R — {A € GL,(R]v]) | A is upper triangular modulo v}

(resp. R — {A € GL,(R[v]) | A is unipotent upper triangular modulo v}).

We define an affine flag variety F1 (resp. F1) as the (fpqc) sheafification of the presheaf
R +— Z(R)\LGL,(R) (resp. R+~ Z1(R)\LGL,(R)).

Then Fl is an ind-proper ind-scheme, and the natural map Fl — Fl is a T-torsor. We write the
products (over F)

Fly < [[F1 and Fly =[] FL
JjET jeTJ

and have a T-torsor Fl 7 — Flz, which is the product over J of the T-torsor Fl — FI above.
Let a < bbe integers. If in the definition of LGL,, we impose the further conditions v %4, v’ A~! €
M, (R[v]), we have the subfunctor LI*!GL,, of LGL, which induces finite type subschemes F11%%,

P:l[(l’b} in F1 and FI respectively. We define Fl[a 'l and ﬁl?’b]
For w € W, we define

Se(w) € INIWI CF1 (resp. S2(w) &

analogously.

def

I\Zw@wI CFl)
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that are called the open affine Schubert cell associated to w. For z7 = (%) jes € W write
Sp(Z7) H Sp(Zj) and SF Z7) H Sp(Zj).

jeT jeTJ
We consider the closed sub ind-scheme F1V° of F1 which is the (fpqc) sheafification of the functor
d 1
(8.2.1) R {I(R)A € Z(R\GLy(R(v) | (U%A)A—l €~ LieIl(R)}

~ V
By taking products over J we obtain the closed sub ind-scheme Fl;0 of Fl7. We define F1 jO as
the pull back of FI}° along Fl7 — Fly.
Denote by YF[O’n_I]’T the base change to IF of the groupoid of Kisin modules with height in [0, n—1]

and type 7 (cf. Defninition [2.3.1). Given a lowest alcove presentation (s, ) of 7 where u + 7 is
n-generic Fontaine—Laffaille, [LLHLMal Corollary 5.2.3] gives a natural map

L ,7— ~Y —~_ - O’I’L 1]
T YT 2 (Grgn DY T = B0

given by sending 9 to the class of Agy g, for any choice of eigenbasis 3 (cf. loc. cit. for the definition

0 ~ 10— _
of (Gréfg1 })*7 and the T-action involved). We define YF[O’n U7 to be the pull-back of Y]F[O’" .
~ [0,n— [0,n—1 )
under the T-torsor Fl‘[jn ! — [Fl jn ] /(s L]- In particular we have a natural map
- _ 0,n—1
(8.2.2) Tl 1 Yi0m 0T L @D

Let A+ n be the weight fixed at the beginning of this section. Let ¢\ € X*(Z) correspond to the
class t\W, € W/W, = X*(Z). Let V be a Serre weight with lowest alcove presentation (iy,w)
compatible with ¢y, such that w is (n — 1)-generic Fontaine—Laffaille. We define C‘C} as the Zariski
closure of Sg(wjwg)s* N Fl;0 for an arbitrary § € W satisfying 5(0) = w [LLHLMa, equation (4.9)].
It is a closed irreducible subvariety of FIEO of dimension (g) [K : Qp], which does not depend on
the equivalence class of the lowest alcove presentation of V' compatible with (. We define 5‘9 as

the pullback of C‘C} along Fl; — Fly. If V 2 F(y) for some p € X1(T) which is (3n — 1)-deep
(in the sense of [LLHLMal Definition 2.1.10]) we obtain from [LLHLMal, Theorem 7.4.2] (see also
loc. cit. Remark 7.4.3(2)) a T-torsor

(8.2.3) O L% 0y C Xy pea.

Fix once and for all the lowest alcove presentation (1, A + 7)) for the Serre weight F'()\), so that
Faen = F(N). We have an action of T on Fly by right multiplication. This action induces

actions on FIVO C’CA and C’CA

We now want to relate the groupoids from § . § E and § . the scheme FL 7, and the
objects introduced above. Recall from Definition [3.1.19( and § [3.1.1] - that given w = (wj)jej,u =

(uj)jeg € W we have the Schubert cell S°(w, u) and the Schubert variety S(w,u) in FL s associated
with (w,u) € W x W. We also write S°(w,u) (resp. S(w, u)) for the corresponding Schubert cell
(resp. Schubert variety) in B\G.

We can now state the proposition resuming the relations among the objects introduced so far.

Proposition 8.2.4. Let A € X3 (T) be a dominant weight with X +n being Fontaine—Laffaille. Let

T be a tame inertial type with a lowest alcove presentation (s, u) where p+n is 2n-generic Fontaine—
~ [0,n—1] _ 1 1
Laffaille, such that (s, p) is compatible with (\ and satisfies Fl\[7 ] w*(1) C F1E7 e }t>\+n'
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Then we have a commutative diagram of groupoid-valued functors over Noetherian F-algebras:

~[0,’I’L—1]7T
(8.2.5) Y .
Tﬁ*ml
— 1 1 1 1 .
fﬁj Tx+n FIE/] n,n— ]t)\+n [Fl‘[j n,n— ] )\+77/NI—sh.cnj] *L)(I)-Modet’n
where the maps are described as follows:
(1) the map rg-(r) is given by composing the map (s ) : }7%0’”71}’7 — ﬁlfg’n_l] with right

~ [1—n,n—1]

multiplication by w*(7) (which lands in F1; trn by assumption);

(2) the top diagonal map is the composition of the natural map ?]F[O’n*l]’T — Y[F[O’nfl]’T with the

map €, defined in ;

(3) the map ¢ is induced by the map sending (A iT7i);c 7 € [ler LU=nn=lUGL, 0% to
the free étale p-module M of rank n, such that the matriz of qSSQ in the standard basis is
given by AUpritn;;

(4) the map x4y is induced by right multiplication by tyqy.

. . . . . . =V
Moreover, the map ¢ is a monomorphism of stacks and the image of i, is contained in Fljo and
A

equals 5%,0\). In particular, the T-fized points of C%A(A) are the elements Wty,.

Proof. The commutativity of the top triangle is [LLHLMal Proposition 5.4.7] (where we take v to
be A in the notation of loc. cit. and a =1—n, b=n—1).

Note that FL 7 naturally embeds in Fl 7, by thinking of G as constant matrices in the loop
group. Thus its translate r,\+n(}'£ 7) is an irreducible closed subscheme of Fl J , and contains
T1,7 \T1,7 woBtriy = 59 (wo)tryn = r,\+n(8 (wp, 1)) as an open dense subscheme. Since Cfp*(/\)

by definition the closure of §]§(wo)t A+n, We conclude by dimension reasons.

The last assertion follows by passing to the quotient c Foy C%( N and noting that the set of
T-fixed points of B\G is precisely the image of W — B\G. O

Recall that we have a formally smooth morphism FL 7= FL;\L“'”. We emphasize that there is a
shift of the indices in J when we pass from FLQ‘*‘77 to ®- Mod®*™ via the maps in Proposition
More precisely, if AU) € GL,(R) is the matrix of the Frobenius map ¢\7) : gr*(M ) — MUTD of
a Fontaine-Laffaille module M (with respect to a given basis of M), then AWy 47 is the matrix

of qﬁs\j/g : MU-D 5 MO (with respect to an appropriate basis on the étale p-module M attached
to M).

Definition 8.2.6. Let w € Adm(n). Let 7 be a tame inertial type with a lowest alcove presentation
(s, ) where pu + n is 2n-generic Fontaine—Laffaille. We define the locally closed substack Ygf&nil]ﬁ
~ [0,n—1]

of leF[O’n_l]’T as the inverse image, via 7 of the open Schubert cell SO(N*) in F1;

ENDE
Remark 8.2.7. (1) We note that for any finte extension F/ of F and w € Adm(n), the objects

of 171%(1’"_1] ""(F’) are exactly the Breuil-Kisin modules of shape w*, cf. [LLHLMa), Definition
5.1.9].
(2) For each w € Adm(n), we recall from [LLHLMal, Definition 5.2.4(i)] the open substack

Y[On U T(w*) C Y[O "7 and let Y[On 1]( *) be its pre-image in Y[On U Then there
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is an inclusion }71%%’”_1]7 - Y[On i "(w*), but this is not an equality in general since
}7%0’“_1}’7 (w*) C }7%0’“_1}’ is always open, while YI%* U i only locally closed.

Proposition 8.2.8. Under the notation and hypotheses of Proposition the diagram

can be completed as follows over the category of local Artinian F-algebras with residue field F:

o [0,n—1],7 Tda
Yr .
Tﬁ*(f)l
~ [1—n,n—1] [1-—n,n—1] st Vi n
Fl; tapy — [Fly trtn/~T-shoenj] —— ®-Mod™" —= Rep"(Gk., )

rAJrUT TRes

ﬁj Perin Rep"(Gk).

Proof. Given Proposition [8.2.4] we only need to check the commutativity of the bottom square,
and this follows easily from [HLM17, Lemma 2.2.8]. O

8.3. Relevant types and Serre weights. We fix a (3n — 1)-generic Fontaine-Laffaille weight
A+n € X*(T), and the lowest alcove presentation (1, A+n) for the Serre weight F'(A). In this section,
we introduce the set of F'(\)-relevant inertial types and compute the pullback (to ]:Ej) of the shape
stratification on Y[O T with 7 being a F'(\)-relevant inertial type (see Proposition . Then

for each z € FL 7, we use the set of obvious weights to control the shape of p, 5, with respect to
F(X)-relevant types (see Lemma [8.3.7)).

Definition 8.3.1. Assume that X\ + 7 is (3n — 1)-generic Fontaine-Laffaille. A tame inertial type
is called F'(A)-relevant if it admits a lowest alcove presentation of the form (s, A\ — s(n)), for some
seW.

Given a F'(\)-relevant 7 attached to some s € W, we clearly have A + n — s(n) is 2n-generic
Fontaine-Laffaille and

[0, [0,n—1]

(8.3.2) R i (r) = Ry Fn

71t>\+n78(n) C Fly Extn-

Remark 8.3.3. Recall from [LLHLMal § 2.3.1] that given a suitably generic tame inertial type 7 we
have a set JHoui(0(7)) of outer weights in JH(o(7)). One can check that the set of F(\)-relevant
types is precisely the set of tame inertial type 7 such that JHey(o(7)) is defined and contains
F()\). In particular, o(7) has F()\) as a Jordan-Holder factor with multiplicity one (cf. [GHSIS,
Proposition 10.1.2], [Jan03], § II 8.19, 9.14, 9.16]).

Lemma 8.3.4. Assume that A + n is (3n — 1)-generic Fontaine—Laffaille. Let s € W and T =
T(s,A+n—5(n)) be a F(\)-relevant type. Then for each u € W we have

(8.3.5) T (1) (?i(t];n—l]n') N 5%\0\) = Taty (go(uwo, ’woSil)) .

In particular, the stratification {Y[O il } ) induces the stratification {go(uwo, wos_l)}

weAdm(n uceW
on fﬁj and for any closed point v € fﬁj( ) the shape of Py x4, with respect to T (as in [LLHL,

Definition 3.2.19]) is defined.
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Proof. The assumption in Proposition holds by ({8.3.2). By Proposition we have

(8.3.6) 6%*0\) = an(ﬁj) = |_| TX\tn <§°(uwo,wos_1)).
ueW
Now we observe that
7@+ (1) (?J&n—l},’r) = ILJ \ILJ uty Ty t_ns_lt)\Jrn,

which contains Z1, 7 \ Z1,7 u(woBwo)s sy = Taiy <§°(uw0,wos*1)>. It follows that the left-

hand side in equation (j contains the right-hand side. The fact that the 171%(1’”71]’7 are disjoint
for distinct w € Adm(n), together with equation (8.3.6) implies the above containment is an
equality. O

We recall the 1 order on p-alcoves defined in [Jan03, § I1.6.5], which induces the 1 order on E
(cf. the discussion at the beginning of [LLHLL § 4]).

Lemma 8.3.7. Assume that X\ + n is (3n — 1)-generic Fontaine—Laffaille and let s € W. Let

P = Py in for some x € ﬁj(ﬂ.‘?) Suppose that 7 = (s, A +n — s(n)) is F(\)-relevant and

@ (5,7) # ty. Then #(Wapne(p) N JH((7)) ) > 1.

Proof. By Lemma we must have w*(p,7) = ut, with u # 1 (or equivalently, we have
¢(w*(p,7)) < £(ty)). Furthermore, by the same Lemma, we have p ~ p*P o T(su™ A+ 7).
Setw; =u~! #1and w; = by, W1 € EY be the image of wy under our fixed injection W EY
Set w = tyi,swi1w; ' (0) We claim that
Fliy w) € Woby(p) N JH (o (7))
which would finish the proof.
It suffices to check the following:
(a) Fl@,w) € Woby(p™) is the obvious weight of p*P corresponding to w.
(b) F({[]hw) S Wg@
(C) F(ﬁhw) S JH(U(T))
Item [(a)] follows from [LLHLMal, Proposition 2.6.2].
As 7 = 7(s,A+n—s(n)) and X\ +n — s(n) is 2n-generic Fontaine-Laffaille, we deduce from
[LLHLMa, Remark 7.4.3(2)] that is a T-torsor for V' = F(g, ). Hence, item @ follows
from the fact that

~ ~o, ~ _ ~ Vo o _
C'g-,? D Sﬁ(w{wo)wot,nwls 1t>\+nﬂF1j D r,\+n<S°(uw0,wos 1))

wy,w) T
F)I).

X
Finally, to check the item by [LLHLMal, Proposition 2.3.7], we need to find wy = kt, € EJF
such that

® tain—sms(—v)=w
® Wy T whwy.

(which implies that p € |Cr;,

The first item is equivalent to v = 1, — 1. Since Ny, — 1 = Wo(Nwgw, ) modulo X°(T) the second
item is equivalent to

’%two(nwowl) T tnwowl wow1,
but this follows from Lemma below applied to ¢ = wow;. This finishes the proof. O
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~ 5+ . . L
Lemma 8.3.8. Let 0 € W and 0 = t,,0 € W, is the image of o under our fized injection
—~—+ —+
W — W, . Let o' € W be the unique element such that o't y €W . Then

wo(No
" tuwg(ns) 17

Proof. Consider the set of elements ., ;)W ot {two(no)w | w € W} whose corresponding alcoves
{two(no)w(4p) | w € W} all contain vy & wo(n,) as a vertex. By [HC02, Lemma 7.5], the set
two(ne)W has a unique minimal and maximal element. We claim that ¢, (,,)wo is the maximal
element. In fact, for each alcove t,,(,, )w1(4y), there exists an anti-dominant alcove ) wa2(Ay)
for some wy € W such that Lo (o)W1 < Ty (1) W2- We clearly have tawo (ne) WO T b (10) W2 As the
1 order is opposite to the Bruhat order in the anti-dominant chamber by Wang’s Theorem [LLHLI
Theorem 4.1.1], we deduce that bwo(ne)W2 < tuwg(n,)Wo and thus i w1 <ty wo. Hence,
two(ne)Wo 18 the maximal element in ¢, ;.

It follows from [HCO02, Lemma 7.5] that ¢,,(,,) is the minimal element in t,,,(,, ). In particular
two(ny) < twg(ns)WoT = woty,0 = woa. We conclude from the fact that o't ,,) and & are the
minimal length representatives in W\W, of t,,(,.,) and woo. O

8.4. The partition P; and obvious weights. In this section, we interpret the partition P
defined in § in terms of obvious weights and specializations (see Theorem . We fix a
n-generic Fontaine—Laffaille weight A +7n € X*(T'), and the lowest alcove presentation (1, A+n) for
F()). Hence, Wopy (7) is defined whenever 7 = 7(w™!, A + n) for some w € W.

Definition 8.4.1. We define the following set of Serre weights
SW(A) déf{F( 5,101) ewxﬁf}

@ ta+nswid; H(0))7 (
where we write w; = Eppy W1

We write ry4, : B\G — Fls for the map induced from 7y, in (by abuse of notation).
We clearly have
SW(A) = |_| Wobv(?(wila A+ 77))7
weW
and thus SW () is exactly the union of Woby(py 24,) for T running in the set of T-fixed F-points

of B\G =5 1,(C3,)s and @ any choice of lift of F in FLy(F).

_ —+
Proposition 8.4.2. Assume that A+n is n-generic Fontaine—Laffaille. For each (s,w1) € WxW ,
we have

(8.4.3) Cg? N Cf,*()\) = rapn(S(wy two, wos™)).

(@1, tx 4 psw1 @] H(0))
Moreover, the map
-1 < ¢
Vet (6P negy)
induces a bijection between SW () and the set of Schubert varieties in B\G.

Proof. We write w = t),,swiw; ' (0) and w; = ty,, w1- The equation 1) follows directly from
(cf. the proof of Lemma [8.3.7))

(S];(a;wo)wot_nwl sy N F1§0) N 7asy(B\G)

= Sp(wiwo)wot—p,, S_lt)\+77 Nrxn(B\G) = ragy <So(wf1w0, wos_1)>
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and the fact that C’C* ) is the closure of Sﬁ(iﬂ{wo)wot,nwls_lt,wn N Flgo. The desired bijection
w1 w

follows from the fact that, given two elements s,s’ € W, we have s(nu,) = §'(nw,) if and only if
S(wy twg, wos™') = S(wflwo,wo(s’)_l). O

Remark 8.4.4. It follows from Proposition 3.1.20| and Proposition that P is the coarsest
partition on ]-"ﬁj such that r) (C’CA 5%*0\)
Ve SW(A).

Let p & P atn for some z € FL7(F), and recall from § the set Wopy(p). We consider the

following enhancement SP(p) of it: the elements of SP(p ) are pairs (V,pP) where V€ W9(p)
and p°P is a specialization of p such that V' € W, (p*?). We have a natural surjective map
SP(p) - Wype(p). For each (V,5°P) € SP(p), there exists a unique pair s,w; € W such that
(swi, A) is a lowest alcove presentation of p* and V' = Vv 4, is the obvious weight of p*P corre-
sponding to w; (with respect to (swi, A)). Note that the pair (F'()\),p°P) is an element of SP(p)
for each specialization p ~» p°P. For each (Vpp ., pP) € SP(p) with p*P = T(swi, A + 1), we set

O5((Voee 1> PP)) 4 5. This defines a map 05 : SP(p) — W.

is a union of elements in the partition, for each

Lemma 8.4.5. Assume that X\ + n is n-generic Fontaine—Laffaille. Let x € }\ZJ(F) be a point,
and p iy Penin. Then (Vgw u,,pP) € SP(p) for some p™ = T(swi, A +n) if and only if x €
go(wl_lwo,wosfl).

Proof. It is easy to see that go(wl_lwo,wos_l) = g’(wl_lwo,wos hn M(Sw = Now this follows
immediately from Lemma and Proposition ]

Theorem 8.4.6. Assume that A+n is n-generic Fontaine—Laffaille. For each x € ﬁj(F), the map
9?1,)&»7]
(1) there exists C € Py such that z,2" € C(F);

(2) SP(ﬁx,A—&—n) = Sp(ﬁz’,)\—i—n);
(3) {psp | Pa Mn 7 psp} = {psp | Pa An 7 psp}‘
Proof. We first check the bijectivity of 65, ,, . Let C be an element of Py with « € C(F). For a

given s € W, there exists a unique wy € W such that C C go(wl_lwo, wps~ 1) by Proposition
Now by Lemma we have a map W — SP(p), which can be readily checked to be the inverse
map of 9,)1 M

We now check the equivalence. The equivalence between item (|1) and item . follows immedi-
ately from Proposition [3.1.20] and Lemma [8.4.5] The equlvalence between item (1)) and item (| .
follows from item |(iii)| of Lemma |3.1.16| and Lemma 8.1.3}

is bijective. Moreover, the following conditions are equivalent for two points x,x’ € FL 7(F):
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9. CANONICAL LIFTS OF INVARIANT FUNCTIONS

In this section, we interpret invariant functions on FL 7 as (normalized) mod-p reduction of
functions on the moduli of Weil-Deligne representations with F'(\)-relevant inertial types, for each
A+ 1 being (3n — 1)-generic Fontaine-Laffaille. Our main result is Theorem

9.1. Sub inertial type and index set. Let 7 be a 1-generic tame inertial type for K. In particular
we have a lowest alcove presentation (s, u) € W x X*(T) for it, where p+n is 1-generic Fontaine—
Laffaille and the characters {x; | 1 < i < n} appearing in the decomposition are pairwise
distinct. Recall the set ns from equipped with a right action of W x Z/f. We also recall
the definition of s, from Definition In this section, we prove in Lemma that there exists
a bijection between the set of subsets I C ny satisfying I - (s}l, 1) = Iz, with the set of sub
inertial types 7 C 7 over K.

Given the 1nert1a1 type 7, we write X, for the set {xi | 1 <i < n} where the characters x; are
defined in . We fix a bijection X, S5n by sending y; to ¢. It follows from Definition

that Xif = Xor1(3) for each i € n, and thus the bijection

X, — X, X’_>pr

corresponds to the permutation s-! on n, under the fixed bijection )?T S n. Let g €7 bea

sub Ig-representation, then there exists a subset )Z'Tl - )Z'T such that 7 = @Xe % x- We notice
that 71 C 7 is a sub inertial type over K if and only if 7} ! et Gaxe)?n pr = 7, if and only if )~(TI
corresponds to a union of orbits of s; under the bijection )~(T = n. We write X, LN /s7 for the set
of orbits of s, and then write X, for the image of )~(ﬁ under )N(Tl — )N(T — X,. Hence we obtain
a natural bijection between the set of sub inertial types over K and the power set of X, given by
71 — X;,. Note that we also understand X, as a subset of the power set of )27, by viewing each
A € X, as a single orbit inside )~(T = n under the action of s,.

We consider (in analogy with n 7) the set n Lnx g’ equipped with a right action of W™ xZ/ f'.
We use the notation /7 = (I;)jc7 for a subset of n7 with each I; C n, and similarly the notation
I7 = (Ij)jieq for a subset of ny. We write s77 € W" for the image of s under the diagonal
embedding. N N

Given a sub Ix-representation 71 C 7, we obtain a subset X; C X, such that 7, = EBXE % X-

To 7 one can attach the set I;»_; C n by the condition

Xo ={xili€lp}
Y(Ipi_y) for each j/ € J'. We observe that
Iji1 = (s gr,j/ﬂ)_lsgr,j'(fj’) = s (L)

for each j" € J', so that we have I - (3}}, 1) = I, where Iy = (Ijs)jre-
Hence, the associations 71 + Iy + Iz gives rise to bijections between the following three
sets:

and then define I;; & (s orj)

(9.1.1) {sub Ix-representations of 7} +— {subsets of n} <~ {I7» Cnz | I 7 - (s}}, 1)=1Ix}.

Moreover, these bijections are compatible with the action of s; on n. More precisely, we have the
following.
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Lemma 9.1.2. The maps in induce bijections between the following three sets:
(i) the set of sub inertial types 71 C T over K;
(ii) the set of subsets I C n satisfying s;(I) = I;
(iii) the set of subsets I7 C ny satisfying Iz - (s}l, 1)=17.

Proof. Since the maps between and are induced from the ones in equation (9.1.1]), we

only need to show that the extra conditions are compatible. The bijection between to (i1)| follows
directly from the discussion at the beginning of this section. The key observation for the bijection

between |(i1)| and is that s;(I) = I if and only if 17/ is f-periodic (using (2.1.6])). Then we finish
the proof by noting that there is a natural bijection between the set of subsets I 7 C n s satisfying
Ig- (s}l, 1) = Iz, and the set of f-periodic subsets I+ C n g satisfying I - (s}}, 1)=1p,. 0O

Given a sub inertial type 71 C 7 over K, we write I}l for the subset of n s corresponding to 7
via Lemma [9.1.2)

9.2. Extremal shape. In this section, we use the results from §[8.3and §[9.1]to prove a comparison
result, Proposition [9.2.13] Let R be a Noetherian O-algebra.

Recall from [LLHLMal, § 5.2 and § 5.3] the O-schemes of finite type ﬁ(tn, <n) C UlOn-1l (ty).
By [LLHLMal, Proposition 3.2.8, § 5.2 before Definition 5.2.4] an element of U(t,, < n)(R) is a
collection A = (AU));c7 of n x n matrices with entries in R[v + p] such that for each j € J

n—k—éi;ﬁk
(9.2.1) Al%) = Ok (51'214: Z C%?z(” + p)z>

l=n—1i

for all 1 < i,k < n and for all n —i < £ < n — k — 64, with moreover ct?) € R* for all
1 <k <mn. For each (k,j) € ny, we define

def 1 d(n—k)(A(j)) )
Sok,j(A) = (n — k)' dv(n_kl;k = Cgejk),nfk

for each A € U (ty, <n)(R) and each Noetherian O-algebra R, which gives a morphism

erj Ulty, <n) = Gp0.
It is obvious that if A € ﬁ(tn, <n)(R), then
(9.2.2) AP oo = p" Py ;(A) € p"FR
for each (k,j) € ny.

Using equation 1) it is not difficult to see that there is a natural isomorphism §§(tn) ~

ﬁ(tn, < n)r where U(t,, < n)r denotes the special fibre of ﬁ(tn, <7), so that we have a closed
immersion

(9.2.3) i, Sp(ty) = Ulty, <n)p <= Ul(ty, <n)

-
where the latter is the canonical closed immersion of the special fibre. We consider the natural
projection to the j-th factor Proj; : Sgp(ty) — Sp(ty;) = Z1\Z1Tt,; I1 and define py, ; by the
following composition

~ Proj,;
Sﬁ;(tn) —JJ> Il \Il Ttnj Il =T x Il \Il t77 Il —» T E—k> Gmy]}r
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for each (k,j) € ny. Then it is clear that for each (k,7) € ny we have

(9.2.4) Pk,j O lt, =L O Py
where ¢ : Gy, p — G0 is the canonical closed immersion.

In what follows, given us = ust, € Ev, we write rg , for the map
(9.2.5) Tay - ﬁj — ﬁlj
defined by right multiplication by u .

Lemma 9.2.6. Let uy = ugt, € Wt,. Then we have rz ,(M°

—1
Ug

) C Sg(ty) and

-1 o
S OTry, = JS _ . . M 1 —>» G F
Prjoriy = I > 1,k7‘7f5uj—1’k+1,3 u; m,

for each (k,j) € ng (with the convention fg _, o & 1).
uj \n
Proof. 1t is clear that rg, (M°_,) C §f§(tn) by definition. From Lemmas [3.1.9} [3.1.3| and the
7
definition of rz, we have
fsu]fl,k’jf“;:]fl,kﬂ’j
./\/lu}1 ?OJ_J»U\UTwOUwOuj —)TXU\UwOUwouj —» T = GmF
T’U‘J

~ Proj; ~
S2(ty) = TINT1 Tty Tt —— T x T\ ity L1 2 —» T —"% Gy

Pk,j

which is easily checked to be commutative. O

We fix a tame inertial type together with a lowest alcove presentation: 7 = 7(s7, A+n—s7(n))
where A + 71 is n-generic Fontaine-Laffaille. Then we define

def 7
(9.2.7) Orr = H i Ulty, <n) = Gpo.
(kj)el}

Lemma 9.2.8. Let A + 1 be n-generic Fontaine—Laffaille and let 7 = 7(sgz,\ +n — sz(n)) be a
tame inertial type. Then we have t,\_H,ﬁ*(T)_l = sgty, and for each sub inertial type 71 C T

. _ . o
SDT,TI © /Ltn o T.Sjtn =10 fs}l’f\;l * Ms}l - Gm,(’)~

Proof. 1t is clear that we have w*(7)t_x_, = t_ns_l. Now, the other identity follows directly from
the definition of f S in § and Lemma O

From now on we assume that A+ is (3n—1)-generic Fontaine-Laffaille, in order to use the results

of § Consider the p-adic formal scheme ?SW’T(tn) defined in [LLHLMa, Definition 5.2.4(2)].
We have an isomorphism

(9.2.9) YT (1) S Ulty, < 0)',
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which we denote 7, in what follows (and which lifts the restriction to ?FSW’T (ty) of the morphism

T(syp) ?Elo’n_l]j [D n defined in § |8 .) We let Y<7 be the closed p-adic formal algebraic
substack of Y0n=1l. characterlzed by the two itemized properties in [LLHLMal p. 79]. By letting
}ZQ” o Y[On U Y<"’ , we note that we have Y ST (ty) = 175"7’7 as gﬁi(tn) o~ ﬁ(tn, <n)r and
(19.2.9)) (cf. Remark“ .

Let R be a p-adically complete Noetherian O-algebra and let (90, gon) € }757777(25,7)(}2) be a R-
point. Assume (9, ¢ox) admits a ¢,-gauge basis § (in the sense of [LLHLMal, Definition 5.2.6]) and

let Cgt) ) AY ?B be the matrices associated to (9, ¢on) and [ as in Definition [2.3.3| and equation
(2.3.5). (See [LLHLMa Proposition 5.2.7] for the existence.) Then, by definition, the isomorphism

T YSUT(1 ) — U(tn, < )" sends (M, oy, B) to (Agjﬁ)ﬁ)]ej For each x € X, and each j' € J',
we write @((j’) e BU") for the element where A acts by x, and if we write gbfm ( Ko, (BX )) as

a linear combination with respect to 8U”), then we set CE(DJ&;X € R[u'] as the coefficient of 6)(3 )

Hence, {CSJ]I%X}X ¢, exhausts the diagonal entries of Cgt)ﬁ We define Ag{)ﬁ \ as the diagonal entry

of Ag{’)ﬁ which equals Cgi/,,)&x’ via the relation (2.3.5)). It follows from ([2.3.2) that
(") G'+1)
(9.2.10) Cot i = Cop s

for each x € X, and each j' € 7.
Let 71 C 7 be a sub inertial type over K, and set ry dof #A for each A € X,. We define

(9.2.11) Srm (M, 0. ) =[] H N

X€X-, J'=0
which gives a morphism of p-adic formal schemes
< LA
Grm 2 YT () = AS 7.
Lemma 9.2.12. The morphism ¢, does not depend on the choice of the basis [3.

Proof. We fix an arbitrary section 6 : X, — )?T of the quotient map 557 — X, (namely the choice
of a character §(A) € A for each orbit A € X;). For each A € X, we deduce from (9.2.10) that

ra—1
(4") J'+kf)
H sz 931 B.O(A)
XEA
which implies that
f-1 fra—1
G _ (3"
[T I Gms= 11 ©
XEA j/= §'=0

Suppose 3’ is another choice of eigenbasis, then there exists t(] ) € R* such that

5;’(” i(gt)xﬂ(]l)

for each j' € J and y € X,. It follows from (2.3.2) and Definition [2.3.3| that tg{) t( f) for each

x € X, and each j' € J'. In particular, (tf%l)x)j/ej/ is fr-periodic for each x € A € XT. Hence we
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deduce that

o
J
11 HCW,X II Snson
XEA j'= 3'=0
) @) D
_ J —10 7=
= T o) ™' Conpontonac
i'=0
fra—1 G = (
H Coson = 11 HCDJ]?B,X’
X€EA j'=0
which finishes the proof by taking product over A € X,. ]

For each sub inertial type 7 C 7 over K, we set
def
drr = Z (n—k)eN
(k.j)el}

where I}l C ny is the subset associate with 71 via Lemma We abuse the notation ¢ -, for

the associated morphism of p-adic formal schemes Usn (tn)"r — G;\f o given by p-adic completion.
Proposition 9.2.13. We have
~ 1A
Grmy = pirm Orpy OTr: an’T(tn) —AS 7,
for each sub inertial type 71 C T over K.

Proof. Let R be a p-adically complete Noetherian O-algebra and we check the equality for an
arbitrary object (9, ¢on, B) € Y="7(¢,)(R). Then it follows from (9.2.2) that

¢T,7’1((m7¢fmw8)) = H H ijt)ﬁx‘ulzo

eX Jj'=0

= II »eriay).

(k.j)el

)

Here, we emphasize that A(j ) is f-periodic in j' and thus we can write A(j M 5 instead. Moreover,

the second equality comes from Lemmam 9.1.2| together with the identity (2.3.5) - Hence, we conclude
that

¢T,T1 ((m7 qbgﬁa ﬁ)) = pdT’Tl P71 (Am,ﬁ)a
which finishes the proof. (|

We end this subsection by summarizing the results discussed in §[8and §[0.2} for each sub inertial
type 1 C 7 =7(sgz,p) with p = A +n — sz(n) where A + 7 is (3n — 1)-generic Fontaine-Laffaille,
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we have the following commutative diagram

VT OV (1) s Y (1)

- S<n,
T (s 7o11) v
T@* (r) T(s 7.1)
71} ~ it ~ Or, T
< Sp(ty)S . U(ty, <n) - Gm,0
w*(T) 2
—1] J
Tsgtn At Tsgtn G
’!’)\+n
5 o f -1 Jant
FL7 <—)MS_1 sy lg
J

where

Tx+n and rg«(y are described in Proposition
Tsst, is defined in (9.2.5), and -w*(7) is the right multiplication by w*(7);

77 is described in (9.2.9)), and 7(y, ) is defined in ;

i, is defined in (9.2.3);

¢r.r is defined in (9.2.11)) and ¢, is in ;

?FSW’T( ty) = ?SW’T is illustrated in the paragraph of (9.2.9));
ommutat1v1ty of the diagram follows from Lemma [9.2.6) Proposition and the para-

graph of ((9.2.9 -

9.3. Invariant functions and Weil-Deligne representations. In this section, we apply the
results of § to prove Theorem [9.3.3] which relates invariant function with some normalized
mod-p reduction of (product of) Frobenius eigenvalues of Weil-Deligne representations.

We denote by Rep’ (W) the groupoid of Weil-Deligne representations of Wi over n-dimensional
vector spaces over E. (In particular, if ¢ € Repk (Wi ) then the restriction <|7, is by definition an
inertial type.) Let g, € Wk be an element whose image in Wf(b corresponds to p via Artyx : KX 5
W2b. Then for a given ¢ € Repk (W), g, acts on A"(s) by a scalar ai € E*, which is often called

the Frobenius eigenvalue of .

As at the beginning of § let 7 be a tame inertial type with lowest alcove presentation (s, )
such that p + n is 1-generic Fontaine-Laffaille. We have a covariant functor
D7 . YOr=UT(0) &5 Reph (W)
whose image lands in representations ¢V such that ¢|;, = 7, and which is defined as follows. If
(M, po) € YIO=17(O), then D) = oo (M/u/'M) @p E is a free K' ®q, E-module of rank n,
endowed with a ¢-semilinear and E-linear automorphism ¢p o) i (@m o kon,p (mod u )) ®e idg,

and with a K'-semilinear and E-linear action of A = Gal(L'/K), compatible with ¢pn). We
thus define an action of Wi on D(9) by the following rule: g € Wg acts by the automorphism

§¢B‘(’gjlt()g ) where g is the image of g € Wx in A (via the natural surjection Wx — Wi /Wy = A),
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and val(g) € Z is defined via g = ¢"2(9) modulo Ix. Note that Wy /I is generated by /. This
action of Wy preserves the E-linear decomposition D(M) = @ D(OM)U") and it is easily seen
(cf. [BM02, Lemme 2.2.1.2]) that the Wi-representations D(90%)U") are all isomorphic. We define
D7(M) as the isomorphism class of D(9M)U") and, by construction, we have D7 (9)];,. = (V) @0 E.

Lemma 9.3.1. Let (M, ¢om, B) € }73"’7(%)((’)) and ¢ be a Wi -representation satisfying s/ —
D™ (M) and <1|1, = 11. Then we have

oy = oy = drn (M, ém, B)).
Proof. 1t is clear that ozg_ll = agv. To compute the Weil-Deligne representation from the given
Breuil-Kisin module 91, we chéose §' = f'=1. Asval(g,) = —f, g, acts on D(M)/'~1 by gpqﬁfD(m).
More precisely, if we write ¢(DJ()91R) : D)UY — D)) for the induced map from dpem) via
D(OM) = @17 D(M)U") then the following diagram describes the action of g, on D(90%)/'~1):

(0) (1) (2) (f=1)
9p

By abuse of notation, we write 8U") for the basis of D(9%)U") induced from the 3U") of MU,
We also write Bgt?g for the matrix of ¢(DJ()932) - DU — D)) with respect to 4~ and

ﬁ(j/). It is easy to see that Bg{)ﬂ = ng]u/:m so that Bg&g is a diagonal matrix from ([2.3.5]), which

implies that {5“,_1) | x € X, } forms a basis for ¢;. We further let BE(DJT,)BX o C’éjjt 3.y lur=0 which is
)

a diagonal entry of B(j

We set 71 < dimp ¢ and note that g, acts trivially on L = K(7), due to our choice of g,, so
that we have wy(g,) = 1. Hence, from the description of §p¢fD ), we have

agy = A" (gp) = ] HBW, 11 ch%gx = 67y (M, Gom, B)),

X€X7'1 - Xexrl
which finishes the proof. O

Let Repg’n_u’T(G k) denote the groupoid of O-lattices in potentially crystalline representations
of Gk over n-dimensional E-vector spaces, becoming crystalline over L’ with Hodge—Tate weights
in [0,n — 1] and inertial type 7. We have a contravariant functor of groupoids

Reply™ 17 (Gx) — Y17 (0)

constructed in [LLHLMal, Proposition 7.2.3] (compatible with the results in [Kis06, § 1.3]), noting
that Rep[0 ntlT "(Gk) = A0l ""(O). We also note that if 9, is the Kisin module associated to an
O-lattice in a potentially crystalline representation p then we have (imp Ju'm ) ®oE = D} (plc,,)
(see [Kis06l, Proposition 2.1.5] for a version when E = Q). Here, we write Dc,s for the covariant
functor DX in [Sav05, Proposition 2.9].
F 0,n—1],7 n .
inally, recall from § the covariant functor WD : Repy,™™ " (Gk) — Rep(Wk) obtained

from [CDT99, Appendix B.1] (after extending to E the coefficients of the objects in Rep[ ot "(Gk)).
We write WD* for the composite of WD followed by taking the dual Weil-Deligne representation.
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Lemma 9.3.2. Let 7 be a tame inertial type with lowest alcove presentation (s, ) such that p+n
18 1-generic Fontaine—Laffaille. We have a commutative diagram of groupoids

yOn7(0) —2 Reph (W) -

T WD*

Repe” 7 (Gk)

Proof. The vertical functor sends a O-lattice in a potentially crystalline representation p to the
associated Breuil-Kisin module 9,. The result follows from (90,/u'M,) ®o E = D} (pla,,) and
keeping track of the descent data from L’ to K (cf. [EG, § 4.6]). The genericity assumption on 7
guarantees that the Galois representations under consideration are potentially crystalline since the

characters x; appearing in (2.1.3)) are pairwise distinct. O
We consider a lift pg , ., € Repg’nfl]’T(G k) of Py x4y to which we can associate a Weil-Deligne

representation ¢ aof WD(p;JH_n) : Wk — GL,,(F) satisfying ¢|;,, = 7. Each sub inertial type 71 C 7
for K determines to a subrepresentation ¢; C ¢ satisfying ¢|r, = 7. We consider ag, € E* (the
Frobenius eigenvalue of ¢; defined at the beginning of § which clearly depends on the choice of
p%/\_s_n and 7.

Theorem 9.3.3. Let A +n be (3n — 1)-generic Fontaine—Laffaille. Let x € ﬁj(}F) and sz € W
with © € Ms}l (F). Then for each sub inertial type 1 C 7 = 7(sg7, A\ +n — s7(n)) and each lift
Poxty OF Py as above, we have valp(ag!) = dr 7y and

-1

a§1 — X
=f_1,r F~.
pirm fsjl’ljl (z) €

Proof. We pick up an object (MM, pon, B) € }75"’7(%)(0) whose image under 777, is isomorphic to
Py ainlGi.. - Note that we can recover ¢V = WD*(py aty) from (O, gon, 3) via Lemma The
result follows immediately from (9.2.4)), Lemma Proposition [9.2.13| and Lemma O
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10. LOCAL-GLOBAL COMPATIBILITY

In this section, we use a set of normalized Hecke operators and results from previous sections to
prove our main result on local-global compatibility (see Theorem |10.3.3)).

10.1. Hecke actions. In this section, we introduce the set of normalized Up-operators which will
be eventually related to the set of invariant functions using suitably normalized local Langlands
correspondence. For this section, let R be a commutative ring. For a topological group G, we
denote by Rep®”(G) the abelian category of smooth (i.e. locally constant) representations of G
over R.

10.1.1. Compact induction and Hecke algebras. Given a closed subgroup H of a topological group G
and an object (0,V) € RepR*(H), we define the smooth induction

Ind% (o) f {f:G— V| fislocally constant and f(hg) = o(h)f(g) for all h € H,g € G}
and smooth compact induction c-Ind% (o) which is the subspace of Ind% (o) consisting of functions
with compact support modulo H. (We often omit V' from the notation for simplicity.) This induces
two exact functors
Ind%, c-Ind$ : Rep$(H) — Rep$(G)

which are called the induction and the compact induction, respectively. These are the right and
left adjoints, respectively, of the restriction functor - | : Rep®*(G) — RepR"*(H ), which are called
the Frobenius reciprocity. Note that ¢-Ind§ = Ind% when H\G is compact. Let v € V and g € G.
There is a unique map [H, g — v] : G — V supported on Hg such that [H, g — v|(hg) = o(h)v for
all h € H, g € G. If H is open and compact, then [H,g — v] € c-Ind% (o) and elements of this
form span c-Ind$ (o).

Given two closed subgroups Hi, Hy C G and o; € RepR'(H;) for i = 1,2, we consider the
R-module

H§27H1(02, o1) def Homg (C—Ind%ag, C—Indglal) = Hompy, (02, (C—Indg1 o1)|m,)-
The map

Homyy, (o9, (C—Indfllal)\HQ) — {loc. const. ¢ : G — Homp(o2,01) |
(10.1.1) ¢(h1gh2) = Ul(hl)(b(g)dg(hg) for all h1 S th S G, hg S HQ}
¥ (g 9(=)(9))

is an isomorphism, giving another description of 7—[%2, H, (02,01). For a closed subgroup H C G, the
space HS 1;(0,0) = Endg(c-Ind§ o), which we simply denote by H$ (o), is naturally an R-algebra
via Compésition.

Given ¢ € Hompg(og,01), there is at most one function f : G — Homp(o2,01) supported on
the double coset HygHs such that f(highe) = o1(h1)poa(hs) for all hy € Hy and hy € Hy. If this
function exists, we denote it by [Hi, g — ¢, Ha]. If H; and Hs are furthermore compact and open,
then [Hy,g — ¢, Hs| € Hg27H1 (02,01) (if it exists) using the identification (10.1.1). Under this
identification, we have

(10.1.2) [Hy,g — ¢, Hy)([Ha, o'+ v]) = Y [Hi, ghag' +— (0a(h2)(v))]
hoel

where HigHs = | | Higho.
ho€l
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10.1.2. Up-operators. Recall that K denotes a finite unramified extension of Q, of degree f, with
ring of integers Ok and residue field k. We write ¢ = p/ = #k.

We define the compact open subgroups K & GL,(Ok) and K; & Ker(GL,,(Ok) — GLy(k)) of
GL,(K) (equipped with the p-adic topology). We recall from §[1.3.2]the pairing X*(T) x X,(T') — Z

and the basis (e1,...,&,) of X*(T'). Then {a,...,an_1,6n}, where a; = ;—e;41 for 1 <i <n-1,
forms a basis of X*(T'), and we denote by {w® ... w} the corresponding dual basis of X, (T).
Then w® =370 _, ) for each 1 < i < n, where {e},...,ey} is the dual basis of {e1,...,,}. We

abuse w® for the induced map K* — T(K) C GL,(K). (For instance, w®(p) € T(K)).
Let L C GL, be the standard Levi subgroup with diagonal blocks GL; x GL,,_; and consider

the standard maximal parabolic subgroup P™ ' I.B with its opposite parabolic subgroup P~ aef
LwyBwy. We denote the unipotent radical of P* (resp. of P~) by N* (resp. by N7). Let PT Cc K
and P~ C K be the preimage of P (k) and P~ (k), respectively, under the reduction map. Let
P/ C K (resp. P{ C K) be the unique maximal pro-p subgroup of P* (resp. of P~). Then the
quotients P*/P] and P~ /P are naturally identified with L(k).

Let o be an R[L(k)]-module which is a smooth PT-representation (resp. P~ -representation)
over R by inflation. Observing that w®(p) centralizes L(Of) and w® (p)PTw®(p)~! = P~ we
have three elements

UO Pt O () s id,, P € HE ) (0);

d:ef [P+>w(i) (p)_1 = ido: P_} S Hgli’:‘l(ff) (0’,0’);

t;

S &P~ 1 id,, PY] € Hor s (0,0).

Note that P*tw(® (p) 1P+ = w® (p)"1P~P* = (Ptw(p)~'P~) (P~ PY).
Lemma 10.1.3. Let w® (p), PT, P~, and o be as above. Then
Uu® = t;oS,.
Proof. By Frobenius reciprocity, it suffices to check that
UD(PT, 1 v]) = (t; 0 Sy)([PT, 1 v])

for all v € 0. Let I be a set of representatives for K;\P{. Then we have Ptw®(p)~1P+ =

L] PTw® (p)~'h which implies that by (10.1.2
hel

(10.1.4) UO(PH 1 0) = [P (p) b o],
hel

On the other hand, we also have P~P* = | | P~ h, which implies that by ((10.1.2
hel

(tio So)(PH, 1 0]) = ;> [P~ s o)) = > [P, (p) ' hs v,
hel hel
(The last equality follows from P+w® (p)~1P~ = P*w(®(p)~1.) This completes the proof. O

Let 71 and 7 be tame inertial types of dimension ¢ and n — i, respectively, such that 7 =7 ® 1
is a regular tame inertial type. In the context when o = o(m1) ®g o(m2), we denote U® by UTr.
Then the K-type o(7) is isomorphic to Indjy; o(71) ® o (72). The claimed isomorphism follows from
[LLHLMal, Proposition 2.5.5], noting that by [Her09, Lemma 4.7] the induction Indg, o(71) @ (72)
is isomorphic to the Deligne-Lusztig representation attached to 7 by [GHS18, Propostion 9.2.1] and
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latter is irreducible (cf. [LLHLL Corollary 2.3.5]) since 7 is regular. Let ¢ be a Frobenius-semisimple

representation Wx — GL,,(E) with |7, = 7. Then ¢ is a direct sum of representations ¢; ¢ with

Silrx = 7i. Recall from the beginning of § that ag, is the Frobenius eigenvalue of ¢;. Recall the

map 7, from [CEGT16, § 1.8]. The isomorphism HSEH(K)(O‘) = HI(}(L”(K) (o(7)) identify UT* with
. GL, (K)

an element in Hyg (o(7)).

Proposition 10.1.5. Let 7, ¢, and 51 be as above. The operator U™ acts on

Homp+ (0(71) ®p (1), 7, (<) ]p+) = Homxk (o(7), 75 (<) |x)

i(2n—i—1)

by the scalar g 2 o'

1 °

Proof. We write det; : GL; — G, for the determinant. The regularity of 7 and the decomposition
S =61 @ 2 imply that

ry ' (6) = Ind g2 () det | @ 1y ():

According to the discussion before [CEG™16, Theorem 3.7] based on [Dat99, Proposition 2.1 and
Theorem 4.1], we deduce an isomorphism of commutative algebras (using 7 is regular)

L(K ~ 1/GLn(K
(10.1.6) Hiory(0) =2 H " (o(7)
which sends [L(Og),w® (p)~! ~ idy, L(Of)] to UT. In fact, we have an isomorphism

Hom (o, (0(1) ®5 0(r2), 1, " (s1)] det "' @7, (s2)) = Homg (o(7), 7, (5) k)

which is Hﬁgg})()(a)—equivariant under (10.1.6). Asw® (p)~! centralizes L(O), [L(Of),w® (p)~

idq,L(OK)} acts on HomL(@K)(a(71> ®p o(12),m, " (q1)| det; " @ T‘p_1(§2)) by the same scalar as
w®(p)~! acting on 7y H(s1)|det; ["7" @ 75 (s2). This equals the scalar by which p~'Id; acts on
7y H(s1)| det; ["* which is qi(”_")qm;l)of1 as 75 (c1) = rec, ! (q1) ®@p | det; |=D/2 (see [CEGT16]
§ 1.8]) and |p| = ¢~ !. Tt is then clear that UT! acts on Homg (o(7), 7, 1(s)|k) by the same scalar. [

S1

10.1.3. Normalized Uy,-operators. We keep the notation K, P* L, 7, 7,0 and UT from §
In particular, o = o(71)®pa(7s) is an irreducible L(k)-representation over E with o(7) & c-Indp, o
being irreducible as well. Fix a L(k)-stable O-lattice 0° C o. It is clear that Sy, = [P™, 1 + id,, PT]
is obtained from an embedding

(10.1.7) c-Indp;0° — c-Indp_o°

(K), and this embedding is an isomorphism after inverting p as C-Ind§+a is

. GLn
by applying c-Indg
irreducible. Hence, we obtain two K-stable O-lattices c-Indjs; 0° C c-Indi_ o° inside o(7).

Let o(7)° C (:—IndEJr 0° be another K-stable O-lattice in o(7), and k € Z be the maximal integer

such that p™*o(7)° C c-Indg_0° via (10.1.7). We set

(10.1.8) S;(T) :0(1)° < c-Indg, 0° and S

o) o(1)° < c-Indf_o°

where Sj(T) is the inclusion o(7)° C (:—IndEJr o and S

o(r
C—Indg_ o°.

) is the composition o(1)° AN pFo(r)° C
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Upon abusing the same notation for the maps induced from applying c—IndGL"(K) the maps
SU(T) and Sg(T) can be inserted into the following commutative diagram involving U(Z):
Ut
(10.1.9) c—IndgE”(K)a L A IndGL"(K) ° t—> c- IndGL"( )5
Sj(rﬁ Sr:(rﬁ Sjm]
c- IndGL"(K) (1)° S AN IndGL"(K) (1)° cIndGL"( )O'(T)O.

The commutativity of the diagram follows from Lemma [10.1.3|and the definitions of S;E(T).
We consider the following condition:

Condition 10.1.10. For an O[GL,(K)]-module w the map
G o 'n o
Hompqr, (k) (c-Ind g Ln (K)O' m) — Homopjar,, (5 (c- Ind (K) o(1)°,m)
induced by S:(T) s an wsomorphism.

If Condition [10.1.10| holds on an O[GL, (K )]-module 7, then we can apply Hompjqr,, (x(—, )
to the diagram (|10.1.9) and complete it to a commutative diagram

(10.1.11)
Ut
Hom(c- IndGLn( o°, )<S7 Hom(c- IndGL"( 6%, 1) " Hom(c- IndGL”(K) °,m)

S:WJ Saml Siml
71
Hom (e-IndS2®) g (r)°, ) < Hom(c-ndS ®a(7)°, 1) & - Hom(e-IndS™ B ()°, 1)

by setting U 1 & SU_( yotio (S:(T))*l. Here Hom denotes Homp|qr,, (k) and we abuse the same

notation for various maps induced by applying Homp\qr,, (k) (= 7) to (10.1.9).

10.2. Axiomatic approach to recover Galois representations. In this section, we give a
general axiomatic approach to recover the local Galois representation using patching formalism

and modularity of obvious weights. The main result is Theorem [10.2.15

10.2.1. Modules with arithmetic actions. We introduce an axiomatic context, based on |[CEG™18|
§ 3|, in which we deduce our main local-global compatibility result. Let p : Gxg — GL,(F) be a
continuous homomorphism and let Rg be the universal O-lifting ring of p. Let RY be a complete
equidimensional local Noetherian O-flat algebra with residue field F and set

R = RYGoR".
(We suppress the dependence of R, on R'.) We write m C R, for the maximal ideal of R, and

let 11 % —wo(n). If 7 is a tame inertial type, we let RZ" denote the potentially crystalline O-lifting
ring of p of type 7 and parallel Hodge-Tate weights p as defined in [KisO8], and set

Roo(r) & RT

7HA
- ®B%Roo
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If 6 is an O[K]-module which is finite over O and M is a pseudocompact O[K]-module with a
compatible action of GL,,(K), then the tensor product
(10.2.1) M(0) € M @0k 0
is an HICEL"(K)(H)—module via the natural isomorphism
(10.2.2) (M ®opk] )" = Homex) (6, M) = Homojar, (1)) (c-Indge ™0, M)

where ()Y & Hom@*( - , E/O). (The first isomorphism follows e.g. from [GN, Lemma B.3] and
the second from Frobenius reciprocity).

Recall from § that ¢ : G, — Z,; is the cyclotomic character with mod-p reduction w and
that w is the Teichmiuloer lift of w. We abuse the same notation for their restriction to Gx and the
corresponding characters of K* via the normalized Artin’s reciprocity map (cf. § .

Definition 10.2.3. An arithmetic Ro[GLy,(K)]-module (or an O[GL,,(K)]-module with an arith-
metic action of Ry) is a non-zero O-module M., with commuting actions of Ry, and GL,(K)
satisfying the following axioms:

(1) the Ry [K]-action on My extends to R [K] making M., a finitely generated Roo[K]-
module;

(2) M is projective in the category of pseudocompact O[K]-modules;

(3) if 7 is a tame inertial type and o(7)° C o(7) is an O-lattice, the Ryo-action on My (o (7)°)
factors through Ry (7), and My (o(7)°) is a maximal Cohen—-Macaulay Roo(7)-module;

(4) the action of ,HI%LTL(K)(O'(T)) = ’HICEL”(K) (o(1)°)[1/p] on Moo (o (7)°)[1/p] factors through the
composite

i (o)) #5 B 1/p] — Reol(n)[1 /1)

where the map 7 is the map denoted by 1 in [CEGT16, Theorem 4.1];

(5) if V is a Serre weight and 7 is a tame inertial type over E such that V' € JH(o(7)), then the
Roo-action on M (V) factors through Roo(7)F, and My (V') is a maximal Cohen—Macaulay
R (T)p-module.

An arithmetic R[GLy(K)]-module My thus defines a functor 6 — My (0) from the category
of O[K]-modules which are finite over O to the category of finite Ro.-modules. The functor My,
obtained this way is a weak patching functor in the sense of [LLHLMal, Definition 6.2.1] (though
we only consider trivial algebraic factors here). We say that an arithmetic Roo[GLy,(K)]-module
M is minimal if the corresponding weak patching functor is minimal in the sense of [LLHLMal
Definition 6.2.1(I)].

Lemma 10.2.4. Given a Fontaine-Laffaille Galois representation p : Gx — GL,(IF), there exists
a minimal arithmetic Roo|GLy(K)]-module My .

Proof. This follows from the proof of [LLHLMal, Proposition 6.2.4] and |[CEGT16, Lemma 4.17(2)]
using that Fontaine—Laffaille deformation rings are formally smooth, and all Fontaine—Laffaille lifts
are potentially diagonalizable by [BGGT14, Lemma 1.4.3(2)]. O

Given an arithmetic R[GL,(K)]-module My, we define
— def

(10.2.5) W, () = {V | V is a Serre weight such that M., (V ®p w" ! o det) # 0}.

For any O[K]-module § which is finite over O, the finitely generated Ro.-module My, (0) is nonzero
if and only if M (f)/m is nonzero by Nakayama’s lemma. Let 7o be the admissible GL, (K)-
representation (M, /m)Y over F. Then for an O[K]-module 6 which is finite over O, (M (6)/m)"
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is isomorphic to Homk (0, 70|k ). In particular, for a Serre weight V', V € Wy, (p) if and only if
Homk (V ®@p w™ ! o det, moo|K) # 0.

If S is a set of Serre weights, we write S ®p w" ! o det & {Verpw'lodet |V € S}. For each
tame inertial type 7, we clearly have

o(T R0 " N 2o(r) @ " odet
and so
(10.2.6) JH(o (7 ®0 @™ 1)) = JH(o (7)) ®F w™ ' o det.
Here we recall that JH(o (7)) is the set of Jordan-Holder factors of the mod-p reduction of an

arbitrary K-stable O-lattice in o(7).
Recall the set Wopy,(p) defined in (8.1.6). The following condition is important for us

Condition 10.2.7. There ezists v € FL 7 (F) such that p = p, g for a (3n—1)-generic Fontaine—
Laffaille weight A+ n. Moreover, we have an inclusion Wopy (p) € War (p).

Note that Condition |10.2.7| implies that F'(A) € Wi (p)-
Given A + 1 which is (3n — 1)-generic Fontaine-Laffaille, we recall the notion of F'(\)-relevant
types from Definition [8:3.1]

Lemma 10.2.8. Assume that p satisfies Condition|10.2.7. Let 19 be a F(X\)-relevant inertial type.
Then w*(p, 19) = ty if and only if

JH(o(10)) N W (p) = {F(V)}.
In particular, the set Wy (p) determines the set of F(X\)-relevant types 1o such that w*(p,10) = t.

Proof. Let 19 be a F(\)-relevant inertial type. If w*(p,79) = t;, then it follows from Lemma
[LLHLMDb| Theorem 5.1.2] and [LLHLL Proposition 4.3.2, Remark 4.3.3] that there exists a special-
ization p ~» p°P such that

JH(o(10)) N Wi (p) € JH(a(m0)) "W (5P) = {F(A)},

which together with Condition [10.2.7/implies that JH(o'(70)) "W, (p) = {F(N)}. If w*(p, 10) # ty,
then we have £(w*(p, 70)) < £(t;) (cf. Lemma(8.3.4)) and deduce from Lemma|8.3.7|that there exists

Ve (Wobv( )NJH (o (71 )) \{F ()}, which together with Condition|10.2.7|implies that {F'(\),V} C

JH(o(70)) N Wz (p). This shows that @*(p, 79) = t,, if and only if JH( o(10)) N Wi () = {F(\)?},
and so Wy (p) determines the set of relevant types 1o such that w*(p, 79) = t,. O

10.2.2. Normalized Up-action. We keep the notation K, Pt L, 7, 7,0 as well as UT! from §/10.1.2
and Sf(T) from (|10.1.8|).
We consider the following condition:

Condition 10.2.9. (1) JH(coker S;L(T) ®o F) N (Wi, (p) @r w1 o det ) = 0.
(2) JH(coker S, o (n) ®o F) N (War, (p) ®r w™ P odet) = 0.

Assuming Condition[10.2.9| (I]), we have that the map Mo (c(7)°) — Moo (Indpy, 0° ) induced from
S:(T) is an isomorphism, or equivalently that Condition [10.1.10| holds for MY (cf. ) This
implies that the induced map My (o(7)°)/m — MOQ(IJ[ldKfr 0°)/m is an isomorphism, or equivalently

that Condition [10.1.10] holds for e (Moo /m)Y (cf. (10.2.2))). Then we get an endomorphism
U7 € End(Hompqar, (5 (c-Indg ™o (7)°, 7o) 2 End(Home) (0(7)°, 7o)
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as in (10.1.11)). As in (10.1.11), we abuse the notation S;’(T),S;(T) for the maps induced from
(10.1.8)) by applying Hompk(—, Too)-

Proposition 10.2.10. Assume Condition and that RZ" is reqular. Then 1.(UT) €
p"R;" and UTt € End(Homopk(0(7)°, Too)) acts by the scalar p~"neo(UT) (mod m) € F. If
furthermore Condition holds, then p~ "1 (UT) (mod m) € F*.

Proof. From (10.1.11)), there is an endomorphism UT' of Hompki(o(7)°, MY,) with the property
that p~ - INJ'Z1 = S:(T) o Ut o ( ;'(T))_l. Moreover, if Condition [10.2.9 holds, then the map

Moo (0(7)°) = My (Indp-0°) induced from S;(T) is an isomorphism, and thus U = S;(T) ot;o

(S(':(T))*1 is also an isomorphism. If we denote by INJ:1 and UT' the respective Pontrjagin dual

endomorphisms, then U™ acts on Mu(o(7)°) (intertwining the Rso-action) and p® - UT acts on
Ma(0(7)°) by 1oe (UT).

There exists a minimal arithmetic R [GL,(K)]-module M/ by Lemma Serre’s theorem
on finiteness of projective dimensions of finite R, (7)-modules and the Auslander-Buchsbaum for-
mula imply that the maximal Cohen—-Macaulay R, (7)-modules such as M/ (o(7)°) are free. Then
the R.,_(7)-rank of M’ (o(7)°) is one. The above considerations apply, and we conclude that UT!
acts on M/ (o(7)°) by an element of R, (7) = Endpr_ (M. (o(7)°). Since R, (7) is p-torsion free,
this element must be p™"1.(UT'). In particular, p~"n.(UT') € Rg“ and if Condition
holds then p~ "1 (UM) € (R%’“)X.

Using that Mu(o(7)°) is p-torsion free and that p®-UT! acts on Mo (0/(7)°) by 7700 (UT), U acts
on Moo(0(7)°) by p~"nee(UT!) € R7¥. Then U™ acts on Moo (0(7)°)/m by p~"1se(UT) (mod m),
and the result follows by applying Pontryagin duals. [l

We now fix A + 1 € X*(T) which is (3n — 1)-generic Fontaine-Laffaille and let 7 ®o @'~ be
a F(M)-relevant type. Note that for an arbitrary choice of a K-stable O-lattice o(7)° C o(7),
o(7) & o(7)° ®oF contains F(\) ®pw"™ ! odet as a Jordan-Hélder factor with multiplicity one (see

Remark |8.3.3| and d10.2.6b). Since o(71) and o(72) are defined over Ejy & W (F)[p~!], we can and do
choose Ey-rational structures o(71)g, and o(72)g,. We choose o, C o(1)E, ®g, 0(T2)E, to be an

arbitrary L(k)-stable W (F)-lattice. Then we choose o(7)%, C Ind{.&,a%o to be the unique W (IF)-
lattice whose cosocle is isomorphic to F/(\) ®r w™ ! o det and whose image in Ind{.§+ o5, Owr) F

def

is nonzero. We fix the choice ¢° &' oz, @we) O and o(1)° = o(7)g, @wr) O. As k € Z is the
maximal integer such that o(7)° C p”Indg, c° and Ey/Q, is unramified, we deduce that the image
of o(7)° in (p"IndE_c°) ® F is nonzero.

Lemma 10.2.11. Assume that p satisfies Condition |10.2.7. Let T @0 @'~ be a F(\)-relevant
type such that w*(p, 7 ®o @W'™") = t,. Then the choice of 0° and o(7)° above satisfies Condi-

tion and Condition (2B
Proof. Tt follows from Lemma [10.2.8| (applied to 70 = 7 ® @' ~") and Remark that
JH(o (T ®o @'=™)) N War, (p) = {F (M)}

and o(T ®p w!~™) contains F()\) as a Jordan—-Holder factor with multiplicity one. The choice of

o(7)° above forces the image of S;L(T) ®o F (resp. of Spr) ®0 F) to contain F(\) @pw" ! odet as a

Jordan—Holder factor, which implies that coker S;F(T) ®o F (resp coker S;L(T) ®o F) does not involve

F()\) ®F w" ! odet. Hence, Condition [10.2.9 and Condition [10.2.9 follow. g
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Proposition 10.2.12. Assume that p satisfies Condition |10.2.7. Let T ®0 @™ = 7(s7, A\ + 1 —
s7(m)) be a F(\)-relevant type and 71 C 7 a sub inertial type. Suppose that Iz is the set corre-
sponding to 71 ®o &' via Lemma (9.1.4 and that p = D, 5, for some x € M531 (F). Then there

exists a unique Kk € Z depending only on T and 11 such that p~"ne(UT') (mod m) = fs}17]J (z).

Proof. The fact that p = p, ,,, for some z € MS? (F) implies that w* (p, T®@pw'™™) = t,. It follows

from [LLHLMD, Theorem 4.2.1] that RZ* is formally smooth over O, and in particular regular.
Then it follows from Proposition [10.2.10] and Lemma [10.2.11] that there exists x € Z depending
only on 7 and 71 such that p~"n.(U) € (R%’“ ). We consider a p° associated with an arbitrary

homomorphism R%’“ — O (with kernel p) and observe that pg L p° 00 (e"15177) is a potentially

crystalline lift of p with inertial type 7 ®o @'~ and Hodge Tate weights n — 1,...,1,0. We set
¢ = WD(p%), s = WD(p) and note that sp 2 s @ (JArt,'[*1&1™"). We write ¢o1 C g for the
unique subrepresentation satisfying ¢p 1|7, = 71 ®o W=, Hence, we may apply Theorem to

def
0 and deduce that val,(ag ') = do = drgpzi-n rgem-—» and

S0,1 = f71

X
e = ’Ij(x)e]F .

It follows from Proposition [10.1.5{and [CEGT16, Theorem 4.1] that
- fin—i=)
nOO(UT ) (HlOd p) =p 2 agl ’
which together with the identity 04;11 = ]p|"("*1)a;011 = p*fi(”*l)a;oll finishes the proof O

Note that the above proof also shows that

ﬁ_fi(Qn—i—l) _ fi2n—i—1)
B 2 B 2
Remark 10.2.13. Our choice of p and T satisfies the crucial condition that JH(o (7)) N (W (p) ®r

w™ ! o det) contains a unique Serre weight V' which has multiplicity one in o(7). It is clear that
Lemma [10.2.11] admits an immediate generalization for any pair p, 7 satisfying this condition. In
fact, the map UT! in (10.1.11)) exists for such p and 7 (with 7o, = (Ms/m)Y and the choice of o°

and o(7)° similar to that of Lemma [10.2.11]).

10.2.3. Recovering the Galois representations from obvious weights and arithmetic actions. Let
p: G — GL,(F) be a Galois representation. Fix an arithmetic Roo[GLy, (K )]-module My, for p.

+ val,(azt) +do— filn—1) =dp — fz(z2—1)

S1

Lemma 10.2.14. Assume that p satisfies Condition for some x € ﬁj(F) Then the set
W, (p) determines the unique C € Py satisfying x € C(FF).

Proof. We write C € Pz for the unique element such that z € C(F). It follows from Lemma
that Wi, (p) determines the set of F'(\)-relevant inertial types 7o such that w*(p, 79) = t,,. Then
we apply Lemma @l and observe that Wy (p) determines the set {wy € W | C C Mg, }, which
determines C by the item of Lemma (applied to Ck; for each j € J, if C = (Ck,)jey). O

Theorem 10.2.15. Assume that p satisfies Condition|10.2.7. Let My be an arithmetic Roo[GLy (K)]-
module, and 7o be the GL,(K)-representation (Moo/m)". Then p can be recovered from the
F[GL,,(K)]-action on meg.
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Proof. We can write p = p, ,, for some x € FL;(F). As a Serre weight V satisfies V € W, (p)
if and only if Homg (V ®pw™ ! odet, oo i) # 0, we deduce from Lemmathat the K-action
on 7o determines the unique C € Py such that x € C(F). Moreover, for each g € Inv(C), we
deduce from Lemma that there exists sy € W and Iy C ny such that Iy - (s}l, 1) =1Ig,
x € ./\/ls}1 (F) and g = fs?’lj. Assume without loss of generality that I; # (). If 7 = n, then

g =dety (cf. (4.1.5))) and g(x) is determined by the action of pld,, on 7, (using a simple variant of
both Proposition [10.1.5] and Proposition [10.2.10] when i = n). If I 7 # ny, we consider the F()\)-

relevant inertial type 7 ®o @'™" = 7(s7, A + 1 — 57(n)) together with the sub inertial type 7y C 7
such that 71 ®o@!~" corresponds to 7 via Lemma Then we deduce from Proposition
that there exists x € Z depending only on 7 and 7 such that U™ acts on Homg (0/(7)°, oo |K)
by g(x). Since this action of U only depends on the F[GL,,(K)]-action on s and (9(%))gemv(c)
determines z by Corollary the result follows.

10.3. Local-Global compatibility for Hecke eigenspaces. In this section, we apply Theo-
rem to a favorable global setup and deduce our main result on local-global compatibility
(see Theorem . We now fix the global setup for the main arithmetic application. We follow
the exposition and setup of [EGHI13| § 7.1, § 4.2], (see also [HLMI17, § 4.1, § 4.2 and § 4.5]).

Let F/Q be a CM field and F* its maximal totally real subfield. Assume that F'* # Q, and
that p is unramified in F'* and all places of F'* above p split in F.. We write S, for the set of finite

places of F'* above p. For each v € S,/ we fix a place ¥ of F' above it, and write g; to denote the
set of such places. We also let F" L pt ®q Qp and Op+ 4, L Ops 07 L.

We let G,p+ be a reductive group, which is an outer form of GL, which splits over F, such
that G(F,}) = U,(R) for all v | oo. Then (cf. [EGHI3, § 7.1]) G admits a reductive model G over
Op+[1/N], for some N € N prime to p, together with an isomorphism ¢ : G, .11/n] = GLnj0,[1/N]-
If v{ N is a place of F* which is split in F, with decomposition v = ww®, we get an isomorphism

(10.3.1) b G(Opt) — GLu(OR,).

For a compact open subgroup U < G(A%) x G(Op+ ;) and a finitely generated O-module W
endowed with an action of G(Op+ ,,), the space of algebraic automorphic forms on G of level U and
coefficients W is defined as

{f: GEINGAR) = W | flgu) =, f(g9) Vg€ GAF,), Yue U}

(with the obvious notation u = uyuP for the elements u € U). For a finite place v { N of F* we
say that U is unramified at v if one has a decomposition U = Q(OFJ)U v for some compact open
subgroup U¥ < G(AZY).

Let S be a finite set of places of F'™ away from pN such that U is unramified outside S. Let
Ps denote the set of finite places w of F' such that w|p+ is split and does not belong to S. If
P C Pg is a subset of finite complement that is closed under complex conjugation, we write
TF = O[T, 5}) :w € P,0 < i < n] for the abstract Hecke algebra on P, where the Hecke operator

T &i) acts on the space S(U, W) as the usual double coset operator

def

S(U,W)

where w,, denotes a uniformizer of F,,.
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If 7 : Gp — GL,(F) is a continuous absolutely irreducible Galois representation, we write mz for
the ideal of T? with residue field F defined by the formula
det (1 — 7(Froby) X) = 3 (=1 (Njr/g(w)) B (T mod my) X7 Vw € P
§=0
(and N /g (w) denotes the norm from F' to Q of the place w). We emphasize that the ideal mz above
is as defined in [CEG™16, § 2.3], and differs from the ideal associated to 7 in [EGHI3, [HLMIT,

§ 4.2] (our ideal would have been denoted as m;v in loc. cit.). We say that 7 is automorphic if
S(U, W)m,. # 0 for some level U and coefficients W.

We now fix once and for all a place v € S, with lift v € gj in F, and specialize the termi-
nology and notation of § [2| with the unramified p-adic field K taken to be Fj. (In particular,
G is now (Resopﬁ/ZpGLn) ®z, O and K = GL,(OF;) = G(Op+).) We fix a level U? that is

unramified at all places ' € S \ {v} and an O[U}]-module W* which is finite over O, where
def

Uy = Hv'esjf\{v} g((’)F:/). Then the space

n(7) < lim S(UU, WY ®0 (Fy o ) [my]

is a smooth G(F,")-representation, where Fy denotes the trivial representation of K over F.

From now on, we identify K (resp. GLy(F)) with G(Op+) (resp. G(F,f)) via (10.3.1)) without

comments. Note that if V,, is an irreducible smooth K-representation over F then we have
Homgk (V,’, 7(7)[x) = S(U,W* @F V,)[m7]

where V" is the dual of V, and U = U"G(Op+). We also note that S(U, W" ®r V,)[mz] # 0 if and
only if S(U, W ®f Vi) # 0.
We assume that 7 satisfies the following:
(1
(2
(3
(4

the image of ?|GF( ) is adequate;

the representation ?|GF5, is 5n-generic for each v € S, \ {v} (cf. Definition E[),

Wv = ®v,€S;r\{v}V§Y o1y with Vi € Wobv(ﬂg%l ®@p w"t) for all v € ST\ {v};

Homp g (F(X\) ®@r w" ! odet,n(T)|k) # 0 for some weight A\ with A + n being 5n-generic
Fontaine—Laffaille (cf. Definition , and in particular 7 is automorphic.

We can slightly modify Definition and define the notion of an arithmetic Roo[GLy(F")]-
module M, which is a projective pseudocompact O[GLy,(Op+ ,)]-module with a compatible
GL,,(F,f)-action and induces an exact functor § — My ,(#) from the category of O[GL,(Op+ ,)]-
modules which are finite over O to the category of finite Ro-modules. Under the previous con-
ditions, the patching construction of [CEG™16] performed with the spaces of automorphic forms
appearing in [LLHLMa, Appendix A] produces an arithmetic Roo[GLy(F,")]-module My, (de-
noted by My in loc. cit. ). We define MY, & Homoy) (W)Y, Mg, ). Then M is naturally an
arithmetic Ro[GLy, (F5)]-module equipped with an isomorphism of F[GL,, (Fy)]-modules:

(10.3.2) (Moo /m)Y = m(7).

— — — “—

Theorem 10.3.3. Let 7 : Gp — GL,,(F) be a continuous absolutely irreducible Galois representa-
tion, satisfying conditions f above. Then T|q,.  can be recovered from the F|GL, (Fy)]-action
on (7).
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Proof. By lifting F(\) ®@pw" ! odet to a K-stable O-lattice in an algebraic K-type, we deduce from
condition and [EGHI3| Theorem 7.2.1] (adapted to the convention of this paper) that 7|q,.

has a crystalline lift with Hodge-Tate weights A + 7, and thus there exists 2 € FL 7(F) such that
TlGp = Py sy Note that GL,(Op+ ) =2 Uy x K, and condition implies that

HOHIO[GLn((9F+,p)]((WU)v ®r (F(A) @p w™ ! odet), MY, ) #0,

and thus My, is obvious in the sense of [LLHLMD, Definition 5.4.2]. Hence, we deduce from
condition and [LLHLMb| Theorem 5.4.6] that for each V' € Woy (7|Gp. )

HOI"HO[GLn(OFW)]((Wv)v ®r (V @pw" ' odet), My ) #0,

or equivalently My.(V ®F w™ ! o det) # 0. Hence, Condition [10.2.7] holds, which together with
Theorem finishes the proof. O
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APPENDIX A. FIGURES

FIGURE 1. Example of 0y, j forn <k <1
n 1
<+—>
Cq = 0, da =2, €a,1 = €a2 = 3

- (Q
7> k> U, (L, k)

kaO ka,l ka,2 k(l]l ]{’(112 A(lli ka,S ka,4 k,(ZIl ]{’(272 k(QIS ka,5 ka,6
° ° ° ° © -0 0 ° ° © -0 0 °
0 n>k> ka,O
O ka,O Z k> ka,l
O OO ka 1 >k > k?a 2
o o ka,2 >k > k¢1171

R N S
N N
kM3 >k >kes oo
kaz >k >kas oo
haa > k> k2 o
k2> k> k22 o
k22 > k> k20 ——

ke? >k >kas oo

O

ka,5 > k> ka,G O Qo0
k;a,ﬁ Z k Z 1 q)
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FiGURE 2. Examples of vﬁi’ﬁ and Ujﬂli’b when Q7 is a constructible A-lift of type I
+
(Uf,-?l ’ﬁ)fl o {kao|1<c<c—1}U{ki|1<s<d,1<e<es} * ko=hkao
==’ ;
(151 7yt e {kio | 1<c<e -1 U{k" [1<s<dyp1<e<eys} * kie =k,

1,1 1,1
k2 > kl,cl—l > kfl

1,1 k2102,1
ks :

1,1
kici—1 k'

1,1 1,1
k2 - kl,Cl—l > kl

k?,cgfl
————
1,1
1.1 :
ky” =K1 ™M
1,1 1,1
k2 >k1 >k1701_1
i ko co—1
k%’l k1ei—1
1.1 1,1
kl >k2 >k1701_1
k%,l kz,cgfl
L] Y °
1,1
kl' kl,c1fl
1.1 1,1
kl >k2 :kl,cl—l
° )

1,1
ki’ 1,1
1 ky™ = kic—1
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F1GURE 3. Examples of vﬁi’ﬁ when QF is a constructible A-lift of type II
e {kao|1<c<c—1}U{k, |1 <c<c—-1}U{k|1<s<d,1<e<e,}
e {kio]1<c<ea—1}U{k|1<s<dy1<e<eyJU{ki“|1<s<d,l1<e<e,}

et =,

QF -1 . e ~.
o koo, k10="FKio o ki, ke =kae, (v, ti) o kayo ~ s fip e,
11 1,1
kit > ks ko1 > ko,
k2,6271
an!
t
1,1
k 3
1 kl,clfl
11 1,1
kl < kt ; kl,q—l > k2,02—l
k/‘Z,czfl
L
t
° [ ]
1,1
kl,c171 kl‘
11 1,1
ki~ >k ko1 < koepn
kz,czfl
jan!
t
1,1
k 3
1 kl,clfl
11 1,1
kvt < ki, Ko —1 < koe,—t
k2,cgfl

k!

1,1
ky

kl,clfl
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FI1GURE 4. Direction and sign

ka7ca == ka+1,ca+1

FIGURE 5. Notation and color

3 * ¢ '
o —a +e * Fae, /," n® "\ {koe, } \\' o0\ {ka o}
® ’ ° r_
e-tour —e-tour * Karo \' o TNk, }./' n~\ {kao}
FIGURE 6. e-crawl from k to &’

e-crawl —

ka,c,l - ]{(1—1—6,0,1_5_‘E
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FIGURE 7. e-jump at k:c[f]

€
—
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FiGURE 8. Examples of oriented permutations when ¥ is not circular

1
—

—1-end 1-end

FiGURE 9. Examples of oriented permutations when X is circular
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FIGURE 10. Item |(iv) in Deﬁnitionm

kK >k ko —
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FIGURE 13. k! and K’

Cq > 2, Ugi (ka,l) < ka,l

¢ =1 and a e-jump at k.o Fa1
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a e-jump at kf which covers k.o and k.., K ca

———————— ——
\
24 *
ka,O
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b
ka = ka,ca ka,ca
k,b
/'/" o~ N
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FIGURE 14. Comparison between €, 1 ; and Qg x41,;

£
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FIGURE 15. 4 cases for Lemma [7.6.18

Qaa Qa’ g Suppg,_g U’](Qa) uj(ﬂa’) _5’
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